
2026/01/14 06:00 1/5 树状数组

CVBB ACM Team - https://wiki.cvbbacm.com/

树状数组

可它跟树又有多大关系呢？

主要应用于大部分基于区间上的更新以及求和问题。

1.单点修改+区间查询
2.区间修改+单点查询
3.区间修改+区间查询

优点：修改查询O$(\log n)$,码量少常数小

缺点：功能有限

但是避开线段树它不香吗

前置知识点：（一阶）差分思想（简）

首先大家一定都知道差分，那么差分究竟是怎么一回事呢？就让小编带大家了解一下吧！

好了不玩了

首先大家一定都知道前缀和，那么（没玩梗，真的）给定 n 个元素的数组A，前缀和数组B，有$B[i] = A[i]
+ B[i-1]$

也就是$B[1] = A[1]; B[2] = A[1] + A[2]; B[3] = A[1] + A[2] + A[3];$ ……

那么所谓的（一阶）差分，就是前缀和的逆运算。设其数组为C，则$C[i] = A[i] - A[i-1]$ ，也就是

C[1] = A[1]
C[2] = A[2] - A[1]
C[3] = A[3] - A[2]
……
C[i] = A[i] - A[i-1]

则将C取前缀和，便得到原始数组A

主要用途：$O(1)$处理区间值（加减）修改

如将区间(l, r)加上val，只需差分数组C中

C[l] += val;
C[r+1] -= val;

Last
update:
2020/06/03
15:02

2020-2021:teams:manespace:
树状数组

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:manespace:%E6%A0%91%E7%8A%B6%E6%95%B0%E7%BB%84&rev=1591167778

https://wiki.cvbbacm.com/ Printed on 2026/01/14 06:00

求多次变更后某项的值，只需求其差分数组C中该项的前缀和即可

下面是正题

先说灵魂

int lowbit(int x){return x & (-x);}

返回x的二进制从低到高位的第一个'1'代表的数，例如12的二进制为1100，lowbit（12） = 4。

再说原理

设原始数组为A，树状数组为C，则

C[1] = A[1];
C[2] = A[1] + A[2];
C[3] = A[3];
C[4] = A[1] + A[2] + A[3] + A[4];
C[5] = A[5];
C[6] = A[5] + A[6];
C[7] = A[7];
C[8] = A[1] + A[2] + A[3] + A[4] + A[5] + A[6] + A[7] + A[8];
。。。。。。

不难发现是有规律的： $C[i] = A[i-2^k+1] + A[i-2^k+2] + \ldots + A[i]$ —– k为 i 的二进制中从最
低位到高位连续零的长度

那么怎么求和呢？如 $$\sum_{i = 1}^{7} A[i]= C[7] + C[6] + C[4];$$

而7在二进制下为111，减去最低位的'1'后为110，对应6；再减去最低位的'1'后为100，对应4；正好对应上
式的三个下标

那么实现方法也就一目了然了：

int getsum(int x){//区间查询 1-x
 int ans = 0;
 while(x){
 ans += c[x];
 x -= lowbit(x);
 }
 return ans;
}

相应地，建立n个元素的树状数组：

void update(int x, int val){//单点修改,也是建立过程

2026/01/14 06:00 3/5 树状数组

CVBB ACM Team - https://wiki.cvbbacm.com/

 while(x <= n){
 c[x] += val;
 x += lowbit(x);
 }
}

for(int i = 1; i <= n; ++i){
 scanf("%d", &tmp);
 update(i, tmp);
}

以上为基础版树状数组实现，即单点修改+区间查询。

而区间修改+单点查询只需用A的差分数组建立树状数组即可。

update(i, tmp - last);

区间修改(x, y, val)：

update(x, val);
update(y + 1, -val);

最后是类似于基础线段树的区间修改+区间查询

这里我们还是利用差分（差分数组为C）

$\sum_{i = 1}^{n} A[i] = (C[1]) + (C[1]+C[2]) + \ldots + (C[1]+C[2]+\ldots+C[n])$

$= n*C[1] + (n-1)*C[2] +\ldots +C[n]$

$= n * (C[1]+C[2]+\ldots+C[n]) - (0*C[1]+1*C[2]+\ldots+(n-1)*C[n])$

所以上式可以变为$$\sum_{i = 1}^{n} A[i] = n * \sum_{i = 1}^{n} C[i] - \sum_{i = 1}^{n}(C[i] *
(i-1))$$

如果理解前面的都比较轻松的话，这里也就知道要干嘛了，维护两个数状数组，$sum1[i] =
C[i]$，$sum2[i] = C[i] * (i-1)$

下面完整代码（稍作修改可适用于下方例题）

#include<bits/stdc++.h>
#define manespace namespace
#define namepsace namespace
#define tsd std
using manespace std;//传 统 艺 能
//using namepsace std;
//using namespace tsd;

int sum1[1000086], sum2[1000086];

http://www.opengroup.org/onlinepubs/009695399/functions/scanf.html

Last
update:
2020/06/03
15:02

2020-2021:teams:manespace:
树状数组

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:manespace:%E6%A0%91%E7%8A%B6%E6%95%B0%E7%BB%84&rev=1591167778

https://wiki.cvbbacm.com/ Printed on 2026/01/14 06:00

int n, m;

int lowbit(int x){return x & (-x);}

void update(int x, int val){
 int tmp = x;
 while(x <= n){
 sum1[x] += val;
 sum2[x] += val * (tmp - 1);
 x += lowbit(x);
 }
}

int getsum(int x){
 int ans = 0, tmp = x;
 while(x){
 ans += tmp * sum1[x] - sum2[x];
 x -= lowbit(x);
 }
 return ans;
}

int main(){
 scanf("%d%d", &n, &m);
 int tmp, last = 0;
 for(int i = 2; i <= n; ++i){
 scanf("%d", &tmp);
 update(i, tmp - last);
 last = tmp;
 }
 int op, x, y, z;
 while(m--){
 scanf("%d", &op);
 if(op == 1){
 scanf("%d %d %d", &x, &y, &z);
 update(x, z);
 update(y + 1, -z);
 }
 else{
 scanf("%d %d", &x, &y);
 printf("%d\n", getsum(y) - getsum(x-1));
 }
 }
}

板子例题

https://www.luogu.com.cn/problem/P3374

http://www.opengroup.org/onlinepubs/009695399/functions/scanf.html
http://www.opengroup.org/onlinepubs/009695399/functions/scanf.html
http://www.opengroup.org/onlinepubs/009695399/functions/scanf.html
http://www.opengroup.org/onlinepubs/009695399/functions/scanf.html
http://www.opengroup.org/onlinepubs/009695399/functions/scanf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
https://www.luogu.com.cn/problem/P3374

2026/01/14 06:00 5/5 树状数组

CVBB ACM Team - https://wiki.cvbbacm.com/

https://www.luogu.com.cn/problem/P3368

https://www.luogu.com.cn/problem/P3372

睾♂级应用 : 查询-修改-维护区间最值

线段树：我不要面子的吗

注：单次修改 �如果让你重新来过� 如果只大不小则复杂度 $O(log n)$，否则 $O((log n)^2)$

咕咕咕

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:manespace:%E6%A0%91%E7%8A%B6%E6%95%B0%E7%BB%84&rev=1591167778

Last update: 2020/06/03 15:02

https://www.luogu.com.cn/problem/P3368
https://www.luogu.com.cn/problem/P3372
https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:manespace:%E6%A0%91%E7%8A%B6%E6%95%B0%E7%BB%84&rev=1591167778

	树状数组
	可它跟树又有多大关系呢？
	主要应用于大部分基于区间上的更新以及求和问题。
	优点：修改查询O$(\log n)$,码量少常数小
	缺点：功能有限
	但是避开线段树它不香吗

	前置知识点：（一阶）差分思想（简）
	主要用途：$O(1)$处理区间值（加减）修改

	下面是正题
	先说灵魂
	再说原理
	最后是类似于基础线段树的区间修改+区间查询
	下面完整代码（稍作修改可适用于下方例题）
	板子例题

	睾♂级应用 : 查询-修改-维护区间最值
	线段树：我不要面子的吗

