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工科数学分析（2）

11 数项级数

11.1 数项级数的收敛性

11.2 正项级数的敛散性

正项级数比较判别法（很直观）

柯西积分判别法

$x\geqslant 1, f(x)\geqslant 0, f(x)$ 递减 $\Rightarrow \sum\limits_{n=1}^{\infty}f(x)$ 与
$\int_{1}^{+\infty}f(x)\mathrm{d}x$ 同散敛

正项级数柯西判别法（与几何级数比较）

$(\exists \ 0<q<1, N \in \mathbb{N}^{\ast},s.t. \ n>N \Rightarrow \sqrt[n]{a_n}\le q < 1)
\Rightarrow \sum\limits_{n=1}^{\infty} a_n$ 收敛

$(\forall N \in \mathbb{N}^{\ast}, \exists n > N, s.t. \ \sqrt[n]{a_n}\ge 1) \Rightarrow
\sum\limits_{n=1}^{\infty} a_n$ 发散

$a_n\ge 0, (\lim\limits_{n\to \infty}\sqrt[n]{a_n}=q)\vee (\lim\limits_{n\to
\infty}\sup\sqrt[n]{a_n}=q)$，则

$q < 1 \Rightarrow$ 敛

$q > 1 \Rightarrow$ 散

正项级数达朗贝尔判别法

$a_n > 0, b_n > 0, \exists n_0, (n\ge n_0\Rightarrow \frac{a_{n+1}}{a_n}\le
\frac{b_{n+1}}{b_n})$，则 $\sum b$ 敛 $\Rightarrow \sum a$ 敛，$\sum a$ 散 $\Rightarrow
\sum b$ 散
$a_n>0$

$(\exists\ 0<q<1,n_0 \in \mathbb{N}^{\ast}, \mathrm{s.t.}\ n\ge n_0 \Rightarrow1.
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\frac{a_{n+1}}{a_n}\le q < 1) \Rightarrow \sum a$ 收敛
$(\exists\ n_0 \in \mathbb{N}^{\ast}, \mathrm{s.t.}\ n\ge n_0 \Rightarrow2.
\frac{a_{n+1}}{a_n}\ge 1) \Rightarrow \sum a$ 发散

$\lim\limits_{n\to \infty} \frac{a_{n+1}}{a_n} = q$
$q<1 \Rightarrow \sum a$ 敛1.
$q > 1 \Rightarrow \sum a$ 散2.

$\lim\limits_{n\to \infty} \sup \frac{a_{n+1}}{a_n} = q < 1 \Rightarrow \sum a$ 敛
$\lim\limits_{n\to \infty} \inf \frac{a_{n+1}}{a_n} = q > 1 \Rightarrow \sum a$ 散

正项级数拉贝判别法

$a_n>0$1.
$\exists\ r > 1, N_0\in \mathbb{N}^{\ast}$, 当 $n > N_0$ 时，有
$n(\frac{a_n}{a_{n+1}}-1)\ge r > 1$, 则 $\sum a$ 敛
$\exists\ N_0\in \mathbb{N}^{\ast}$, 当 $n > N_0$ 时，有 $n(\frac{a_n}{a_{n+1}}-1)\le
1$, 则 $\sum a$ 散

$a_n > 0, \frac{a_n}{a_{n+1}}=1+\frac{l}{n}+o(\frac{1}{n}) \quad (n\to \infty)$ 或2.
$\lim\limits_{n\to \infty} n(\frac{a_n}{a_{n+1}}-1) = l$，则

$l>1 \Rightarrow \sum a$ 敛
$l<1 \Rightarrow \sum a$ 散

11.3 一般级数收敛问题

莱布尼茨判别法

交错级数 $\sum\limits_{n=1}^{\infty} (-1)^{n-1}a_n,\ a_n>0$，若 $\{a_n\}$ 递减趋于 $0$，则级数收
敛。

分部求和公式

$\{a_n\}, \{b_n\}$ 是实数列，$\forall n\in \mathbb{N}^{\star}, S_k=\sum\limits_{i=1}^{k}a_i, S_0 =
0$，则
$\sum\limits_{k=1}^{n}a_kb_k=\sum\limits_{k=1}^{n-1}S_k(b_k-b_{k+1})+S_nb_n$

（我觉得这就跟分部积分一模一样嘛）

$\int S\mathrm{d}T = ST - \int T\mathrm{d}S$

把 $a_n$ 看成 $\mathrm{d}S$，$b_n$ 看成 $T$，$\sum ab = \int T\mathrm{d}S=ST-\int S\mathrm{d}
T = b\sum a + \sum (\sum a)(b_k - b_{k+1})$

阿贝尔引理

$\{b_n\}$ 单调，$\left|\sum a\right|\le M$，则 $|\sum\limits_{k=1}^{n}a_kb_k|\le M(|b_1|+2|b_n|)$.
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狄利克雷判别法

$\{b_n\}$ 单调递减趋 $0$，$\sum a$ 有界 $\Rightarrow \sum\limits_{k=1}^{\infty} a_kb_k$ 收敛.

阿贝尔判别法

$\{b_n\}$ 单调有界，$\sum a$ 收敛 $\Rightarrow \sum\limits_{k=1}^{\infty} a_kb_k$ 收敛.

11.4 更序问题与级数乘法

更序问题

$\mathbf{Th.\; 11.4.1}$

若级数绝对收敛，则其正项和与负项和均收敛；
若其条件收敛，则两者均发散到无穷大。

$\mathbf{Th.\; 11.4.2}$

若级数绝对收敛，则任意调整其中各项顺序得到的新级数也绝对收敛，且和不变。

$\mathbf{Th.\; 11.4.3}\;\;\text{Riemann 更序定理}$

若级数条件收敛，则可以通过调整其中的项的顺序使其收敛到任一确定实数。

级数乘法

$\mathbf{Def.}\;\;\text{Cauchy 乘积}$

$\sum\limits_{n=1}^{\infty}c_n = \sum\limits_{n=1}^{\infty}
(x_1y_n+x_2y_{n-1}+\cdots+x_ny_1)$

称为级数 $\sum x$ 和 $\sum y$ 的 Cauchy 乘积。

$\mathbf{Th.\; 11.4.3}\;\;\text{Cauchy 定理}$

两级数收敛，则其柯西积亦收敛，且收敛于两级数收敛值之积。

12 函数项级数

12.1 收敛性
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逐点收敛

$\forall x_0 \in I$，若 $\{f_n(x_0)\}$ 收敛到 $f(x_0)$，则称 $\{f_n(x)\}$ 在 $I$ 上逐点收敛.

一致收敛

$\forall\ \varepsilon > 0, \exists N(\varepsilon) > 0$，当 $n>N(\varepsilon)$ 时，$\forall x\in I$，有
$|f_n(x)-f(x)|<\varepsilon$ 成立，则称函数序列 $\{f_n(x)\}$ 在 $I$ 上一致收敛于 $f(x)$，记为
$f_n(x)\stackrel{uni}{\longrightarrow} f(x)$.

12.2 一致收敛的判别

余项定理

$\lim\limits_{n\to \infty} \sup\limits_{x\in I} |f_n(x)-f(x)| = 0 \iff f_n(x)\stackrel{uni}{\longrightarrow}
f(x)\quad (n \in \mathbb{N}^{\star})$

柯西收敛定理

$\forall x_0 \in I, \forall \varepsilon > 0, \exists N(x_0, \varepsilon) \in \mathbb{N}^{\star}, \forall n >
N, \forall p \in \mathbb{N}^{\star}: |f_n(x_0) - f_{n+p}(x_0)| < \varepsilon \iff \{f_n(x)\}$ 在 $I$ 上逐
点收敛.

$\forall \varepsilon > 0, \exists N( \varepsilon) \in \mathbb{N}^{\star}, \forall n > N, \forall p \in
\mathbb{N}^{\star},\forall x \in I: |f_n(x) - f_{n+p}(x)| < \varepsilon \iff \{f_n(x)\}$ 在 $I$ 上一致收敛.

维尔斯特拉斯（Weierstrass）判别法（M 判别法，控制判别法）

若存在收敛的正项级数 $\sum a_n$，使得 $\forall x \in I$，都有 $|u_n(x)|\le a_n$，则 $\sum u_n(x)$ 在 $I$
上一致收敛.

狄利克雷判别法

$$\sum\limits_{n=1}^{\infty}a_n(x)b_n(x)$$

若在 $I$ 上：

$\{b_n(x)\}$ 对固定的 $x$ 单调，一致收敛至 $0$.

$\sum\limits_{n=1}^{N}a_n(x)$ 在 $I$ 上一致有界.

则 $\sum\limits_{n=1}^{\infty}a_n(x)b_n(x)$ 在 $I$ 上一致收敛.
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阿贝尔判别法

$$\sum\limits_{n=1}^{\infty}a_n(x)b_n(x)$$

若在 $I$ 上：

$\{b_n(x)\}$ 对固定的 $x$ 单调，在 $I$ 上一致有界.

$\sum\limits_{n=1}^{\infty}a_n(x)$ 在 $I$ 上一致收敛.

则 $\sum\limits_{n=1}^{\infty}a_n(x)b_n(x)$ 在 $I$ 上一致收敛.

12.3 极限函数/和函数性质

连续性

$f_n(x)$ 在 $I$ 上连续，$f_n(x)\stackrel{uni}{\longrightarrow}f(x)$，则 $f(x)$ 在 $I$ 上连续.

$\sum\limits_{n=1}^{\infty}u_n(x)$ 在 $I$ 上一致收敛于 $S(x)$，则 $u_n(x)\in C_{I} \Rightarrow
S_n(x)\in C_{I}$

Dini 定理

$\{f_n(x)\}\in C[a,b]$，若对任意给定 $x \in [a, b]$，$\lim\limits_{n\to \infty}f_n(x)=0$，$f_n(x)$ 递减，
则 $\{f_n(x)\}$ 一致收敛于 $0$。

$\{f_n(x)\}\in C[a,b]$，且收敛于 $f(x)$，若对任意给定 $x \in [a, b]$，$f_n(x)$ 单调，则 $\{f_n(x)\}$ 在
$[a, b]$ 上一致收敛于 $f(x)$。

$\sum\limits_{n=1}^{\infty}u_n(x), u_n(x)\in C[a,b], u_n(x)\ge 0.$ 若 $S(x) \in C[a,b]$，则
$\sum\limits_{n=1}^{\infty}u_n(x)$ 在 $[a, b]$ 上一致收敛。

积分

$\{f_n\}\in R[a,b]$，$f_n(x)\stackrel{uni}{\longrightarrow} f(x)$，则 $f \in R[a, b]$ 且 $\lim\limits_{n\to
\infty}\int_{a}^{b}f_n(x)\mathrm{d}x=\int_{a}^{b}f(x)\mathrm{d}x$

（极限和积分交换顺序）

$\sum\limits_{n=1}^{\infty}u_n(x)\stackrel{uni}{\longrightarrow}S(x), u_n(x)\in R[a,b]$，则 $S(x)\in
R[a,b], \int_{a}^{b}(\sum\limits_{n=1}^{\infty}u_n(x))\mathrm{d}x =
\sum\limits_{n=1}^{\infty}\int_{a}^{b}u_n(x)\mathrm{d}x$

求导

$f_n^{'}\in C[a,b], f_n^{'}\stackrel{uni}{\longrightarrow}g(x), \exists x_0\in[a, b], \{f_n(x_0)\}$ 收敛
$\Rightarrow \{f_n(x)\}$ 在 $[a,b]$ 上一致收敛于 $f(x)$，且对 $\forall x \in [a,b], f^{'}(x)=g(x)$，即
$[\lim f_n]^{'} = \lim [f_n^{'}]$
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$u_n^{'}\in C[a,b], \sum\limits_{n=1}^{\infty}u_n^{'}(x)\stackrel{uni}{\longrightarrow}g(x),
\exists x_0\in[a, b], \sum\limits_{n=1}^{\infty}u_n(x)$ 收敛 $\Rightarrow
\sum\limits_{n=1}^{\infty}u_n(x)$ 在 $[a,b]$ 上一致收敛于 $f(x)$，且 $S^{'}(x)\in C[a,b],
S^{'}(x)=g(x)$，即 $\left(\sum\limits_{n=1}^{\infty}u_n(x)\right)^{'} =
\sum\limits_{n=1}^{\infty}u^{'}_n(x)$

12.4 幂级数

$\sum\limits_{n=0}^{\infty}a_n(x-x_0)^n$

$\sum\limits_{n=0}^{\infty}a_nx^n$

收敛性

Abel 定理

$\sum\limits_{n=0}^{\infty}a_nx^n$

若在 $x_0 \neq 0$ 处收敛，则对所有 $|x|<|x_0|$ 绝对收敛。

若在 $x_1 \neq 0$ 处发散，则对所有 $|x|>|x_1|$ 发散。

收敛半径

$R\in [0, +\infty)$

收敛半径公式

$R = \frac{1}{\lim\limits_{n\to \infty}\sqrt[n]{|a_n|}} = \lim\limits_{n\to
\infty}|\frac{a_n}{a_{n+1}}|$

代数性质

$\sum a_nx^n: R_a,\; \sum b_nx^n: R_b,\; R=\min\{R_a, R_b\}.$ 则：

$\sum(a_n\pm b_n)x^n = \sum a_nx^n\pm \sum b_nx^n$ 在 $(-R, R)$ 上成立。

$\sum a_nx^n, \sum b_nx^n$ 的柯西积在 $(-R, R)$ 上绝对收敛。

内闭一致收敛性

$\forall [L, K] \subset (-R, R)$，$\sum a_nx^n$ 在 $[L, K]$ 上一致收敛。
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分析性质

Abel 第二定理

$\lim\limits_{x\to R^{-}} \sum\limits_{n=0}^{\infty} a_nx^n = \sum\limits_{n=0}^{\infty}
a_nR^n$ （收敛时）

$\lim\limits_{x\to (-R)^{+}} \sum\limits_{n=0}^{\infty} a_nx^n = \sum\limits_{n=0}^{\infty} a_n(-
R)^n$ （收敛时）

导数性质

$S(x)=\sum a_nx^n: R, \quad S(x)\in C(-R, R)$，$S(x)$ 在 $(-R, R)$ 上有任意阶导数，则

$S^{(k)}(x)=\sum\limits_{n=k}^{\infty} n(n-1)\cdots(n-k+1)a_nx^{n-
k}=\sum\limits_{n=k}^{\infty} n^{\underline{k}}a_nx^{n-k}$

收敛域可能改变（端点处）

积分性质（???）

$S(x)\in R(-r,r)$，且可逐项积分，即对 $\forall x \in (-R,R)$ 有

$\int_{0}^{x}S(t)\mathrm{d}t=\sum\limits_{n=0}^{\infty}\int_{0}^{x}a_nt^n\mathrm{d}t=\sum\
limits_{n=0}^{\infty}\frac{a_n}{n+1}x^{n+1}$

端点性质可能改变

展开

$f(x)=\sum\limits_{n=0}^{\infty}\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n, \quad x\in (x_0-R,x_0+R)$

$f$ 的泰勒级数收敛于 $f \iff \lim\limits_{n\to \infty}R_n(x)=0, \forall x\in U(x_0, R)$

$f$ 的泰勒级数收敛于 $f \Leftarrow |f^{(n)}(x)|\le M, \forall n\in \mathbb{N}^{\star}, \forall x\in
U(x_0, R)$，即 $\{f^{(n)}(x)\}$ 在 $(x_0-R,x_0+R)$ 一致有界

例

这个例 8 有点生成函数的味道？

$f(x)=\frac{1}{1-
x-2x^2}=\frac{1}{3}(\frac{1}{1+x}+\frac{2}{1-2x})=\frac{1}{3}\sum\limits_{n=0}^{\infty}(-1)
^nx^n + \frac{2}{3} \sum\limits_{n=0}^{\infty}2^nx^n$
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应用

求和、求导、求积

用各种基本式子去凑 ..

看起来好难啊

13 Fourier 级数

$y=A_0 + \sum\limits_{n=1}^{\infty}A_n\sin(n\omega t+\varphi_n)$

13.1 周期函数的 Fourier 级数

“一切周期函数都可展成三角函数的无穷级数”

三角级数

$y=\frac{a_0}{2} + \sum\limits_{n=1}^{\infty}(a_n\cos nx+b_n \sin nx)$

三角函数系及其正交性

三角函数系

$1, \cos x, \sin x, \cos 2x, \sin 2x, \ldots$

正交

任两个不同函数的乘积在 $[-\pi, \pi]$ 上的积分为 $0$.

（积化和差 和差化积）

$\int_{-\pi}^{\pi} \sin mx \sin nx \mathrm{d}x = \pi \delta_{mn}=\begin{cases}0, m\neq n\\\pi,
m=n\end{cases}$

傅里叶级数
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傅里叶系数

$\int_{-\pi}^{\pi}f(x)\mathrm{d}x = \int_{-\pi}^{\pi}\frac{a_0}{2}\mathrm{d}x + \int_{-\pi}^{\pi}
[\sum\limits_{k=1}^{\infty}(a_k\cos kx+b_k\sin kx)]\mathrm{d}x=a_0\pi\iff a_0 =
\frac{1}{\pi}\int_{-\pi}^{\pi} f(x)\mathrm{d}x$

$\int_{-\pi}^{\pi}f(x)\cos nx\mathrm{d}x = \frac{a_0}{2}\int_{-\pi}^{\pi}\cos nx\mathrm{d}x +
\sum\limits_{k=1}^{\infty}(a_k\int_{-\pi}^{\pi}\cos kx\cos nx\mathrm{d}x+b_k\int_{-\pi}^{\pi}\sin
kx\cos nx\mathrm{d}x)=a_n\int_{-\pi}^{\pi} \cos^2 nx \mathrm{d}x = a_n\pi\iff a_n =
\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos nx\mathrm{d}x$

同理 $b_n = \frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin nx\mathrm{d}x$

傅里叶级数

若 $f$ 是以 $2\pi$ 为周期的可积或绝对可积函数，那么 $f\sim \frac{a_0}{2} +
\sum\limits_{n=1}^{\infty}(a_n\cos nx+b_n \sin nx)$.

分段可微

$f$ 定义在 $[a, b]$ 上，若存在 $[a, b]$ 的一个分割，使得 $f$ 在分割出的区间对应的开区间中分别可微，
则称 $f$ 在 $[a, b]$ 上是分段可微的。

Fourier 收敛条件

若 $f$ 以 $2\pi$ 为周期，在 $[-\pi,\pi]$ 上分段可微，那么 $f$ 的 Fourier 级数在 $\forall x_0$ 处收敛于
$\frac{f(x_0+0)+f(x_0-0)}{2}$.

推论：$f$ 在 $[-\pi, \pi]$ 有一阶导数 $\Rightarrow f$ 可展成 Fourier 级数。

正弦级数与余弦级数

定义在 [-\pi, \pi] 上时

$\mathbf{Th.}$

（1）当周期为 $2\pi$ 的奇函数 $f(x)$ 展开成傅里叶级数时，其系数为

$$\begin{cases} a_n = 0, &(n = 0, 1, 2, \ldots)\\ b_n = \frac{2}{\pi}\int_{0}^{\pi}f(x)\sin nx
\mathrm{d}x, &(n = 1, 2, \ldots) \end{cases}$$

（2）当周期为 $2\pi$ 的偶函数 $f(x)$ 展开成傅里叶级数时，其系数为

$$\begin{cases} a_n = \frac{2}{\pi}\int_{0}^{\pi}f(x)\cos nx \mathrm{d}x, &(n = 0, 1, 2, \ldots)\\
b_n = 0, &(n = 1, 2, \ldots) \end{cases}$$

$\mathbf{Def.}$
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若 $f(x)$ 为奇函数，其傅里叶级数称为正弦级数。
若 $f(x)$ 为偶函数，其傅里叶级数称为余弦级数。

定义在 [0, \pi] 上时

将其延拓。

奇延拓：$g(x)=-f(-x)$
偶延拓：$g(x)=f(-x)$

周期为 2L 的傅里叶级数

变量置换 $\frac{\pi x}{L} = t$

$F(t) = f(\frac{Lt}{\pi})$

$f(x) = \frac{a_0}{2}+\sum\limits_{n=1}^{\infty}(a_n\cos\frac{n\pi x}{L}+b_n\sin\frac{n\pi
x}{L})$

13.2 Fourier 级数的逐点收敛

Dirichlet 积分

$f$ 是以 $2\pi$ 为周期的可积或绝对可积函数。

记 $S_n(x_0)=\frac{a_0}{2}+\sum\limits_{k=1}^{n}(a_k\cos kx_0+b_k\sin kx_0)$

$$S_n(x_0) = \frac{1}{2\pi}\int_{-\pi}^{\pi}f(x)\mathrm{d}x +
\sum\limits_{k=1}^{n}\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)(\cos kx\cos kx_0+\sin kx\sin
kx_0)\mathrm{d}x$$ $$=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)(\frac{1}{2}+\sum\limits_{k=1}^{n}\cos
k(x-x_0))\mathrm{d}x$$
$$=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)(\frac{\sin(n+\frac{1}{2})(x-x_0)}{2\sin\frac{x-
x_0}{2}})\mathrm{d}x$$
$$=\frac{1}{\pi}\int_{-
\pi}^{\pi}f(t+x_0)(\frac{\sin(n+\frac{1}{2})t}{2\sin\frac{t}{2}})\mathrm{d}x$$
$$=\frac{1}{\pi}\int_{0}^{\pi}(f(t+x_0)+f(x_0-
t))(\frac{\sin(n+\frac{1}{2})t}{2\sin\frac{t}{2}})\mathrm{d}x $$

狄利克雷积分、狄利克雷积分核

Riemann-Lebesgue 引理

$\mathbf{Th.\ \ 13.1:}$ (R-L 引理)
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若 $f$ 在 $[a, b]$ 上可积或绝对可积，那么：

$\lim\limits_{\lambda\to +\infty}\int_{a}^{b}f(x)\cos \lambda x \mathrm{d}x=0$

$\lim\limits_{\lambda\to +\infty}\int_{a}^{b}f(x)\sin \lambda x \mathrm{d}x=0$

$\mathbf{Th.\ \ 13.2:}$

若 $f$ 在 $[-\pi, \pi]$ 上可导，$f'$ 在 $[-\pi, \pi]$ 上可积或绝对可积，如果 $f(-\pi)=f(\pi)$，那么：

$a_n=o(\frac{1}{n}), b_n=o(\frac{1}{n}), n\to \infty$

$\mathbf{Th.\ \ 13.3:}$

若 $f$ 在 $[-\pi, \pi]$ 上有 $k+1$ 阶导数，$f^{(n+1)}$ 在 $[-\pi, \pi]$ 上可积或绝对可积，如果 $f(-
\pi)=f(\pi), f'(-\pi)=f'(\pi),\ldots, f^{(k)}(-\pi)=f^{(k)}(\pi)$，那么：

$a_n=o(\frac{1}{n^{k+1}}), b_n=o(\frac{1}{n^{k+1}}), n\to \infty$

收敛定理

由 R-L 引理，Dirichlet 积分收敛。

傅里叶级数的局部化定理

$f$ 是以 $2\pi$ 为周期的可积或绝对可积函数，那么 $f$ 的傅里叶级数在点 $x_0$ 是否收敛以及收敛到
何数值，仅与 $f$ 在 $x_0$ 附近的取值有关。

Dini 判别法

$\mathbf{Th.\ \ 13.5:}$

若 $f$ 以 $2\pi$ 为周期，且在 $[-\pi, \pi]$ 上可积或绝对可积，对 $s\in \mathbb{R}$，令：

$\varphi(t)=f(x_0+t)+f(x_0-t)-2s$,

若 $\exists\ \delta>0, \mathrm{s.t.} \frac{\varphi(t)}{t}$ 在 $[0, \delta]$ 上可积或绝对可积，那么 $f$
的 Fourier 级数在 $x_0$ 处收敛于 $s$。

$\mathbf{Th.\ \ 13.7:}$

若 $f$ 以 $2\pi$ 为周期，且在 $[-\pi, \pi]$ 上可积或绝对可积，若 $f$ 在 $x_0$ 处存在导数，或者有两个
有限的单侧导数，那么其傅里叶级数在 $x_0$ 处收敛于 $f(x_0)$.

$\mathbf{Def.\ \ 13.2:}$

若 $f$ 在 $U^{o}(x_0)$ 内有定义，若存在 $\delta > 0, L>0, \alpha > 0$，使得当 $t\in (0, \delta]$ 时有

$|f(x_0+t)-f(x_0+0)|\le Lt^{\alpha}$,
$|f(x_0-t)-f(x_0-0)|\le Lt^{\alpha}$,
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则称 $f$ 在 $U^{o}(x_0)$ 内满足 $\alpha$ 阶 Lipschitz 条件。

$\mathbf{Th.\ \ 13.6:}$

若 $f$ 以 $2\pi$ 为周期，且在 $[-\pi, \pi]$ 上可积或绝对可积，且 $f$ 在 $U^{o}(x_0)$ 内满足 $\alpha$
阶 Lipschitz 条件，那么 $f$ 的傅里叶级数在 $x_0$ 处收敛。

14 多元函数的极限与连续

14.1 Euclid 空间的点集及基本概念

n 维向量空间

集合 $\mathbb{R}^n$，定义了加法，数乘

Euclid 空间

定义

在向量空间 $\mathbb{R}^n$ 上定义了内积的空间。

$\langle \boldsymbol{x},\boldsymbol{y}\rangle=\sum\limits_{i=1}^{n}x_iy_i$

半正定性 $\langle \boldsymbol{x}, \boldsymbol{x}\rangle\ge 0$1.
对称性 $\langle \boldsymbol{x}, \boldsymbol{y}\rangle = \langle \boldsymbol{y},2.
\boldsymbol{x}\rangle$
线性性 $\forall \lambda,\forall \mu, (\langle \lambda\boldsymbol{x}+\mu \boldsymbol{y},3.
\boldsymbol{z}\rangle = \lambda\langle \boldsymbol{x}, \boldsymbol{z}\rangle+\mu\langle
\boldsymbol{y}, \boldsymbol{z}\rangle)$

Cauchy-Schwartz 不等式

$\langle \boldsymbol{x}, \boldsymbol{y}\rangle^2\le \langle \boldsymbol{x},
\boldsymbol{x}\rangle\langle \boldsymbol{y}, \boldsymbol{y}\rangle$

范数

定义

$\mathbf{Def.\ \ 14.1.1}$
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$\|\boldsymbol{x}\|=\sqrt{\langle \boldsymbol{x}, \boldsymbol{x}\rangle}$，称向量
$\boldsymbol{x}$ 的范数。

正定性 $\|\boldsymbol{x}\|\ge 0$1.
保数乘 $\|\lambda \boldsymbol{x}\|=|\lambda|\|\boldsymbol{x}\|$2.
三角不等式 $\|\boldsymbol{x}+\boldsymbol{y}\|\le\|\boldsymbol{x}\|+\|\boldsymbol{y}\|$3.

推论

$|\langle \boldsymbol{x}, \boldsymbol{y}\rangle|\le \|\boldsymbol{x}\|\|\boldsymbol{y}\|$

$\|\boldsymbol{x}+\boldsymbol{y}\|^2\le(\|\boldsymbol{x}\|+\|\boldsymbol{y}\|)^2$

夹角

$\cos\theta(\boldsymbol{x}, \boldsymbol{y})=\frac{\langle \boldsymbol{x},
\boldsymbol{y}\rangle}{\|\boldsymbol{x}\|\|\boldsymbol{y}\|}$

距离

$\mathbb{R}^2$ 上定义 $\boldsymbol{x}, \boldsymbol{y}$ 之间距离为 $\|\boldsymbol{x}-
\boldsymbol{y}\|$

开球

$\mathbf{Def.\ \ 14.1.2}$

开球：$B_r(\boldsymbol{a})=\{\boldsymbol{x}\in \mathbb{R}^n|\ \|\boldsymbol{x}-
\boldsymbol{a}\|<r\}$

点列收敛

$\mathbf{Def.\ \ 14.1.3}$

$\{\boldsymbol{x}_k\}\subset \mathbb{R}^n$

$\exists \boldsymbol{a}\in\mathbb{R}^n,\forall \varepsilon>0,\exists K\in \mathbb{N}^{\star},\forall
k>K, \mathrm{s.t.} \|\boldsymbol{x}_k-\boldsymbol{a}|<\varepsilon$，则称点列
$\{\boldsymbol{x}_k\}$ 收敛于 $\boldsymbol{a}$，记为
$\lim\limits_{k\to\infty}\boldsymbol{x}_k=\boldsymbol{a}$，称 $\boldsymbol{a}$ 为点列的极限。

若对每一分量都有 $\lim\limits_{k\to \infty}x_{i, k}=a_i$，称点列 $\{\boldsymbol{x}_k\}$ 按分量收敛
于 $\boldsymbol{a}$。

$\mathbf{Th.\ \ 14.1.1}$

点列收敛于 $\boldsymbol{a} \iff$ 点列按分量收敛于 $\boldsymbol{a}$.
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柯西收敛定理

$\mathbf{Def.\ \ 14.1.4\quad \text{基本列}}$

基本一样，不记了

$\mathbf{Th.\ \ 14.1.2\quad \text{柯西收敛定理}}$

点列收敛 $\iff$ 点列是基本列

开集与闭集

$\mathbf{Def.\ \ 14.1.5\quad \text{开集}}$

$E\subset\mathbb{R}^n$，若 $\forall \boldsymbol{x}\in E, \exists \varepsilon>0, \mathrm{s.t.}\
B_{\varepsilon}(\boldsymbol{x})\subset E$，则称 $E$ 为开集。

若一个集合的补集是开集，则该集合是闭集。

约定 $\mathbb{R}^n$ 和 $\varnothing$ 既是开集也是闭集。

$\mathbf{Prop.\ \ 14.1.1}$

有限多个开集的交仍是开集，任意多个开集的并仍是开集。

有限多个闭集的并仍是并集，任意多个闭集的交还是闭集。

内点、外点、边界点

$\mathbf{Def.\ \ 14.1.6}$

设 $E\subset \mathbb{R}^n, \boldsymbol{x}\in\mathbb{R}^n$,

$\exists B_{\varepsilon}(\boldsymbol{x})\subset E \iff \boldsymbol{x}$ 为 $E$ 的内点1.
$\exists B_{\varepsilon}(\boldsymbol{x})\subset E^{c} \iff \boldsymbol{x}$ 为 $E$ 的外点2.
$\forall B_{\varepsilon}(\boldsymbol{x}), \exists \boldsymbol{p},\boldsymbol{q}\in3.
B_{\varepsilon}(\boldsymbol{x}), \mathrm{s.t.}\ \boldsymbol{p}\in E, \boldsymbol{q}\notin
E\iff \boldsymbol{x}$ 为 $E$ 的边界点

内点的全体称为 $E$ 的内部，记为 $E^{\circ}$。

边界点构成的集合称 $E$ 的边界，记为 $\partial E$。

聚点

$\mathbf{Def.\ \ 14.1.7\quad \text{聚点}}$

$\boldsymbol{a}$ 为聚点 $\iff E\subset \mathbb{R}^n, \boldsymbol{a}\in \mathbb{R}^n, \forall
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\varepsilon > 0, \exists \boldsymbol{p}\in ((B_{\varepsilon}(\boldsymbol{a}))\cap E)$

$\boldsymbol{a}$ 为孤立点 $\iff \lnot (\boldsymbol{a}$ 为聚点$)$

导集、闭包

$\mathbf{Def.\ \ 14.1.8}$

聚点全体称为导集，记为 $E'$。

$\bar{E}=E\cup E'$ 称为 $E$ 的闭包。

$\mathbf{Th.\ \ 14.1.3}$

集合 $E$ 是闭集 $\iff E' \subset E$

$\mathbf{Th.\ \ 14.1.4}$

集合 $E$ 是闭集 $\iff \forall \{\boldsymbol{a}_n\}\subset E, (\lim\limits_{n\to
\infty}\boldsymbol{a}_n)\in E$ （收敛时）

$\mathbf{Th.\ \ 14.1.5}$

集合 $E$ 的导集与闭包均为闭集。

连续曲线、道路连通

$\mathbf{Def.\ \ 14.1.9}$

设 $E$ 是 $\mathbb{R}^n$ 中的点集，若任给 $\boldsymbol{p}, \boldsymbol{q} \in E$，存在 $E$ 中的
连续曲线将两者联结，称 $E$ 是道路连通的。

连续映射：$\varphi = (\varphi_1(t), \cdots, \varphi_n(t)): [a, b]\to \mathbb{R}^n$

若所有的 $\varphi_i(t)$ 都连续，那么称 $\varphi$ 是一个连续映射，它的像为一条连续曲线。

$\mathbf{Def.\ \ 14.1.10}$

$\mathbb{R}^n$ 中道路连通的开集称为（开）区域，区域的闭包称为闭区域。

14.2 Euclid 空间的基本定理

闭集套定理

$\mathbf{Th.\ \ 14.2.1}\text{（闭集套定理）}$

设 $\{E_k\}$ 是 $\mathbb{R}^n$ 上的非空闭集序列，满足 $E_1\supset E_2\supset \cdots \supset
E_k\supset E_{k+1}\cdots$，且 $\lim\limits_{k\to \infty}\mathrm{diam} E_k=0$，则
$\mathop{\cap}\limits_{k=1}^{\infty}E_k$ 中只有唯一的一点。
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$\mathrm{diam}\ E = \sup\{\|\boldsymbol{x}, \boldsymbol{y}\|, \boldsymbol{x}, \boldsymbol{y}\in
E\}$，称 $E$ 的直径。

列紧性定理（Bolzano-Weierstrass）

$\mathbf{Th.\ \ 14.2.2}\text{（列紧性定理）}$

$\mathbb{R}^n$ 上有界点列 $\{x_k\}$ 必有收敛子列。

紧致集

$\mathbf{Def.\ \ 14.2.1}\text{（紧致集）}$

设 $S$ 为 $\mathbb{R}^n$ 上点集，若 $\mathbb{R}^n$ 中一组开集 $\{U_\alpha\}$ 满足
$\cup_\alpha U_\alpha \supset S$，那么称 $\{U_\alpha\}$ 为 $S$ 的一个开覆盖。

若 $S$ 的任意一个开覆盖 $\{U_\alpha\}$ 中总存在一个有限子覆盖覆盖 $S$，则称 $S$ 为紧致集。

有限覆盖定理

$\mathbf{Th.\ \ 14.2.3}\text{（有限覆盖定理）}$

设 $E$ 为 $\mathbb{R}^n$ 中子集，则以下几条等价：

$E$ 为紧致集。1.
$E$ 中任何无穷点列均有收敛子列，且该子列极限仍在 $E$ 中。2.
$E$ 为有界闭集。3.

14.3 多元函数的极限与连续

定义

$\mathbf{Def.\ \ 14.3.1}\text{（多元函数）}$

$\mathbb{R}^n$ 的子集到 $R$ 的映射 $f$ 称为 $n$ 元函数，其中该子集是 $f$ 的定义
域，$\{f(\boldsymbol{x})\}\subset R$ 是 $f$ 的值域。

$z=f(\boldsymbol{x})$ 或 $z=f(x_1, \cdots, x_n)$

二元函数一般记作 $z=f(x,y)$

$\mathbf{Def.\ \ 14.3.2}\text{（重极限）}$

$D\subset \mathbb{R}^n$，$z=f(\boldsymbol{x})$ 是定义在 $D$ 上的 $n$ 元函
数，$\boldsymbol{a}\in\mathbb{R}^n$ 是 $D$ 的一个聚点，$A$ 是一个实数。
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$\lim\limits_{\boldsymbol{x}\to\boldsymbol{a}}f(\boldsymbol{x})=A\iff \forall \varepsilon>0,\exists
\delta>0,\forall \boldsymbol{x}\in B_{\varepsilon}(\boldsymbol{a}),|f(\boldsymbol{x})-
A|<\varepsilon$

称 $A$ 为 $f(\boldsymbol{x})$ 在 $\boldsymbol{a}$ 点的重极限。

海涅定理（Heine-Borel）

$\mathbf{Th.\ \ 14.3.1}\text{（海涅定理）}$

$D\subset \mathbb{R}^n$，$z=f(\boldsymbol{x})$ 是定义在 $D$ 上的 $n$ 元函数，则

$\lim\limits_{\boldsymbol{x}\to\boldsymbol{a}}f(\boldsymbol{x})=A\iff \forall
\{\boldsymbol{x}_k\}\subset D, \boldsymbol{x}_k\neq \boldsymbol{a},
\boldsymbol{x}_k\to\boldsymbol{a}(k\to\infty)$，都有 $\lim\limits_{k\to
\infty}f(\boldsymbol{x}_k)=A$

累次极限

$\mathbf{Def.\ \ 14.3.3}\text{（累次极限）}$

$D\subset \mathbb{R}^n$，$z=f(\boldsymbol{x})$ 是定义在 $D$ 上的二元函数，给定点 $(x_0, y_0)$，
若对于每个固定的$y\neq y_0$，极限 $\lim\limits_{x\to x_0}f(x,y))$ 存在，若极限 $\lim\limits_{y\to
y_0}\lim\limits_{x\to x_0}f(x, y)$ 也存在，则称此极限为函数 $f(x, y)$ 在点 $(x_0, y_0)$ 先对 $x$ 后对
$y$ 的累次极限。

$\mathbf{Th.\ \ 14.3.2}$

二元函数 $f(x, y)$ 在某点的重极限与两个累次极限均存在，则它们相等。

连续

$\mathbf{Def.\ \ 14.3.3}\text{（累次极限）}$

$D\subset \mathbb{R}^n$，$z=f(\boldsymbol{x})$ 是定义在 $D$ 上的 $n$ 元函数，给定点
$\boldsymbol{a}\in D$，若$\lim\limits_{\boldsymbol{x}\to
\boldsymbol{a}}f(\boldsymbol{x})=f(\boldsymbol{a})$，则称函数 $f(\boldsymbol{x})$ 在
$\boldsymbol{a}$ 点连续。

我们约定 $f$ 在 $D$ 的孤立点也连续。

不连续的点称为间断点。

在定义域上每一点均连续，则称 $f$ 在定义域上连续，或称 $f$ 是定义域上的连续函数。

$\mathbf{Example. \ 14.3.7}\text{}$

行列式函数 $\det: M_{n\times n}\to \mathbb{R}$ 是连续函数。（将 $M_{n\times n}$ 视为
$\mathbb{R}^{n^2}$）
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$\mathbf{Example. \ 14.3.8}\text{}$

$n$ 元多项式都是连续函数。

设 $P(\boldsymbol{x}), Q(\boldsymbol{x})$ 为 $n$ 元多项式

$\lim\limits_{\boldsymbol{x}\to\boldsymbol{a}}P(\boldsymbol{x})Q(\boldsymbol{x})=P(\boldsymbol
{a})Q(\boldsymbol{a}),
\lim\limits_{\boldsymbol{x}\to\boldsymbol{a}}\frac{P(\boldsymbol{x})}{Q(\boldsymbol{x})}=\frac{
P(\boldsymbol{a})}{Q(\boldsymbol{a})}, (Q(\boldsymbol{a})\neq 0)$

14.4 多元函数连续的性质

一致连续

$\mathbf{Def.\ \ 14.4.1}\text{（一致连续）}$

$D\subset \mathbb{R}^n$，$z=f(\boldsymbol{x})$ 是定义在 $D$ 上的 $n$ 元函数，如果 $\forall
\varepsilon>0,\exists \delta >0,\forall \boldsymbol{x},\boldsymbol{y}\in D, (\|\boldsymbol{x}-
\boldsymbol{y}\|<\delta\Rightarrow |f(\boldsymbol{x})-f(\boldsymbol{y})|<\varepsilon)$，则称函数
$f$ 在 $D$ 上一致连续。

连续映射

$\mathbf{Def.\ \ 14.4.2}\text{}$

$D\subset \mathbb{R}^n$，$\boldsymbol{f}: D\to \mathbb{R}^m$ 是 $D$ 到 $\mathbb{R}^m$ 的映
射，给定 $\boldsymbol{x}_0\in D$，如果 $\forall \varepsilon>0,\exists \delta >0,\forall
\boldsymbol{x}\in D, (\|\boldsymbol{x}-\boldsymbol{x_0}\|<\delta\Rightarrow
|\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}(\boldsymbol{x_0})|<\varepsilon)$，则称映射
$\boldsymbol{f}$ 在点 $\boldsymbol{x}_0$ 连续。

连续映射类似定义。

可表示为：

$$\left(\begin{matrix} z_1\\ \vdots\\ z_m \end{matrix}\right)=\left(\begin{matrix} f_1(x_1, \cdots,
x_n)\\ \vdots\\ f_m(x_1, \cdots, x_n) \end{matrix}\right)$$

性质

$\mathbf{Th.\ \ 14.4.1}\text{}$

$\boldsymbol{f}: \mathbb{R}^n\to\mathbb{R}^m$ 是连续映射 $\iff \forall f_i$，$f_i$ 是连续函数。

$\mathbf{Th.\ \ 14.4.2}$
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$\boldsymbol{f}: \mathbb{R}^n\to\mathbb{R}^m$，以下条件等价。

$\boldsymbol{f}$ 是连续映射1.
对 $\mathbb{R}^n$ 上任意收敛点列 $\boldsymbol{x}_n\to \boldsymbol{x}_0(n\to \infty)$，均有2.
$\boldsymbol{f}(\boldsymbol{x}_n)\to \boldsymbol{f}(\boldsymbol{x}_0)(n\to \infty)$
对任意开集 $E\subset \mathbb{R}^m$，$\boldsymbol{f}^{-1}(E)$ 是 $\mathbb{R}^n$ 中开集3.

$\mathbf{Th.\ \ 14.4.3}$

连续映射将紧致集映射成紧致集。

$\mathbf{Th.\ \ 14.4.4}$

$D$ 为 $\mathbb{R}^n$ 中紧致集，$f$ 是 $D$ 上的连续函数，则下列结论成立

（有界性）$f$ 在 $D$ 上有界。1.
（最值性）$f$ 在 $D$ 上可以存在最大值和最小值。2.
$f$ 在 $D$ 上一致连续。3.

$\mathbf{Th.\ \ 14.4.6}$

连续映射把道路连通集映射为道路连通集。

推论

（1）连续函数将道路连通的紧致集映射成区间。 （2）连续函数将闭区域映射成闭区间。

$\mathbf{Th.\ \ 14.4.7}$

$D$ 为 $\mathbb{R}^n$ 中紧致集，$f$ 是 $D$ 上的连续函数，则 $\forall y\in \mathbb{R}, (\exists
\boldsymbol{x}_1, \boldsymbol{x}_2\in D, y\in[f(\boldsymbol{x}_1), f(\boldsymbol{x}_2)]\Rightarrow
\exists \boldsymbol{x}\in D, \mathrm{s.t.}\ y=f(\boldsymbol{x}))$

15 多元函数微分学

15.1 全微分与偏导数

全微分

设开集 $D\in\mathbb{R}^n, f: D\to \mathbb{R}$。对 $D$ 中给定的点 $\boldsymbol{x}_0$，对于 $D$
中 $\boldsymbol{x}_0$ 附近的点 $x$，如果

$f(\boldsymbol{x})-f(\boldsymbol{x}_0)=\lambda_1\Delta x_1+\lambda_2\Delta
x_2+\cdots+\lambda_n\Delta x_n+o(\|\Delta \boldsymbol{x}\|)$

其中，$\lambda_1, \cdots, \lambda_n$ 是常数，$\Delta \boldsymbol{x}=\boldsymbol{x} -
\boldsymbol{x}_0=(\Delta x_1, \cdots, \Delta x_n)$。

此时称函数 $f$ 在 $\boldsymbol{x}_0$ 处可微。
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线性主要部分称 $f$ 在 $\boldsymbol{x}_0$ 处的全微分，有时也简称为微分。

偏导

$\mathbf{Def.\ \ 15.1.2}$

设开集 $D\in\mathbb{R}^n, f: D\to \mathbb{R}$。对 $D$ 中给定的点 $\boldsymbol{x}_0=(x_1,
\cdots, x_n)$，极限

$\lim\limits_{\Delta x_i\to 0}\frac{f(x_1, \cdots, x_i+\Delta x_i, \cdots, x_n) - f(x_1, \cdots, x_i, \cdots,
x_n)}{\Delta x_i}$

存在，则称 $f$ 在 $\boldsymbol{x}_0$ 处关于第 $i$ 个分量可偏导，称该极限为函数 $f$ 在
$\boldsymbol{x}_0$ 处关于 $x_i$ 的偏导数，记为 $\frac{\partial f}{\partial x_i}(\boldsymbol{x_0})$
或 $f_{x_i}(\boldsymbol{x}_0)$

$\mathrm{d}f(\boldsymbol{x}_0) = \sum\limits_{k=1}^{n}\frac{\partial f}{\partial
x_k}(\boldsymbol{x}_0)\mathrm{d}x_k$

处处存在偏导：偏导函数

梯度

设开集 $D\subset \mathbb{R}^n, f: D\to \mathbb{R}$。对于 $E$ 中给定的点
$\boldsymbol{x}_0=(x_1, \cdots, x_n)$，如果函数 $f$ 在 $\boldsymbol{x}_0$ 处关于每个分量都可偏导，
则称向量

$(\frac{\partial f}{\partial x_1}(\boldsymbol{x}_0), \cdots, \frac{\partial f}{\partial
x_n}(\boldsymbol{x}_0))$ 为 $f$ 在 $\boldsymbol{x}_0$ 的梯度，记为 $\mathrm{grad}\
f(\boldsymbol{x}_0)$。

方向导数

$\boldsymbol{u}$ 为给定的方向，$\boldsymbol{x}_0\in D$，极限 $\lim\limits_{t\to
0^{+}}\frac{f(\boldsymbol{x}_0+t\boldsymbol{u})-f(\boldsymbol{x}_0)}{t}$ 称为 $f$ 在
$\boldsymbol{x}_0$ 处沿方向 $\boldsymbol{u}$ 的方向导数，记作 $\frac{\partial f}{\partial
\boldsymbol{u}}(\boldsymbol{x}_0)$.

二元函数偏导

设 $z=f(x, y)$ 在点 $(x_0, y_0)$ 的某一邻域种有定义，若 $\lim\limits_{\Delta x\to
0}\frac{f(x_0+\Delta x, y_0)-f(x_0, y_0)}{\Delta x}$ 存在，称此极限为函数 $z=f(x, y)$ 在点 $(x_0,
y_0)$ 处对 $x$ 的偏导数。

对 $y$ 类似定义。
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偏导函数类似定义。

几何意义：

对 $x$ 偏导是曲面被平面 $y=y_0$ 截线在 $M_0$ 处的切线 $M_0T_x$ 对 $x$ 轴的斜率。

对 $y$ 类似。

二元函数全微分

$\mathrm{d}z=\frac{\partial f}{\partial x}\mathrm{d}x+\frac{\partial f}{\partial y}\mathrm{d}y$

三元：$\mathrm{d}u=\frac{\partial u}{\partial x}\mathrm{d}x+\frac{\partial u}{\partial
y}\mathrm{d}y+\frac{\partial u}{\partial z}\mathrm{d}z$

可微条件

多元函数各偏导存在 $\not \Rightarrow$ 全微分存在

必要条件

在某点可微 $\Rightarrow$ 在该点各偏导存在，且全微分 $\mathrm{d}f = \sum \frac{\partial f}{\partial
x_i}\mathrm{d}x_i$

充分条件

如果函数 $z=f(x, y)$ 的偏导数 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ 在点 $(x_0,
y_0)$ 的某邻域内存在，且均在该点连续，则该函数在该点可微。

各条件关系

各偏导连续 $\Rightarrow$ 函数可微

函数可微 $\Rightarrow$ 函数连续

函数可微 $\Rightarrow$ 函数偏导存在

反例：

$f(x, y) = \sqrt{x^2+y^2}$ 上半圆锥1.
$f(x, y) = \begin{cases}\frac{xy}{x^2+y^2}, & x^2+y^2\neq 0\\ 0, &2.
x^2+y^2=0\end{cases}$
$f(x, y) = \begin{cases}\frac{xy}{x^2+y^2}, & (x, y)\neq (0, 0)\\ 0, & (x, y)=(0,3.
0)\end{cases}$

$f$ 在点 $\boldsymbol{x}_0=(x_1, \cdots, x_n)$ 可微 $\Rightarrow$ 则 $f$ 在 $\boldsymbol{x}_0$ 处
沿任意方向 $\boldsymbol{u}$ 的方向导数均存在，且
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$\frac{\partial f}{\partial
\boldsymbol{u}}=f_{x_1}(\boldsymbol{x}_0)u_1+\cdots+f_{x_n}(\boldsymbol{x}_0)u_n$

这里 $(u_1, u_2, \cdots, u_n)$ 是指向方向 $\boldsymbol{u}$ 的单位向量。

15.2 多变量函数的求导

链式法则

多元函数套一元函数

$u=\phi(t), v=\psi(t)$ 都在 $t$ 可导，函数 $z=f(u, v)$ 在对应点 $(u, v)$ 可微，则复合函数
$z=f[\phi(t), \psi(t)]$ 在对应点 $t$ 可导，其导数可用下列公式计算：

$\frac{\mathrm{d}z}{\mathrm{d}t}=\frac{\partial z}{\partial
u}\frac{\mathrm{d}u}{\mathrm{d}t}+\frac{\partial z}{\partial
v}\frac{\mathrm{d}v}{\mathrm{d}t}$

多元函数套多元函数

$u=\phi(x, y), v=\psi(x, y)$ 都在 $(x, y)$ 【可微】，函数 $z=f(u, v)$ 在对应点 $(u, v)$ 【可微】，则复
合函数 $z=f[\phi(x, y), \psi(x, y)]$ 在对应点 $(x, y)$ 可微，其导数可用下列公式计算：

$\frac{\partial z}{\partial x}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial
z}{\partial v}\frac{\partial v}{\partial x}$

$\frac{\partial z}{\partial y}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial
z}{\partial v}\frac{\partial v}{\partial y}$

函数 $f(u_1, \ldots, u_m)$ 在对应点 $(u_1, \ldots, u_m)$，$u_k(x_1, \ldots, x_n), k=1, 2,\ldots, m$ 在
$(x_1, \ldots, x_n)$ 可微：

$\frac{\partial f}{\partial x_i}=\sum\limits_{k=1}^{m}\frac{\partial f}{\partial u_k}\frac{\partial
u_k}{\partial x_i}, i = 1, \ldots, n.$

特殊例子

$z = f(u, x, y), u = \phi(x, y)$

$z = f(\phi(x, y), x, y)$

令 $v = x, w = y$

$\frac{\partial v}{\partial x}=\frac{\partial w}{\partial y} = 1, \frac{\partial w}{\partial
x}=\frac{\partial v}{\partial y}=0$
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则

$\frac{\partial z}{\partial x}=\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial
f}{\partial x}$

$\frac{\partial z}{\partial y}=\frac{\partial f}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial
f}{\partial y}$

注意区别 $\frac{\partial z}{\partial x}$ 与 $\frac{\partial f}{\partial x}$.

向量值函数的微分、Jacobian 矩阵

$\mathbf{Def.\ \ 15.2.1}$

设向量值函数 $\boldsymbol{f}: D\subset \mathbb{R}^n\to \mathbb{R}^m$，点 $\boldsymbol{x}_0 =
(x_1, \cdots, x_n)\in D$。 若存在 $m\times n$ 阶矩阵 $A=(a_{ij})_{m\times n}$，使得

$\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}(\boldsymbol{x}_0)=A\Delta
\boldsymbol{x}+r(\Delta \boldsymbol{x})$

$\lim\limits_{\|\Delta \boldsymbol{x}\|\to 0}\frac{\|r(\Delta
\boldsymbol{x})\|}{\|\Delta\boldsymbol{x}\|}=0$

则称 $\boldsymbol{f}$ 在 $\boldsymbol{x}_0$ 处可微，并称 $A\Delta \boldsymbol{x}$ 为
$\boldsymbol{f}$ 在 $\boldsymbol{x}_0$ 处的微分，记作
$\mathrm{d}\boldsymbol{f}(\boldsymbol{x}_0)=A\mathrm{d}\boldsymbol{x}$.

$$J\boldsymbol{f}(\boldsymbol{x}_0)=\left[\begin{matrix} \frac{\partial
f_1(\boldsymbol{x_0})}{\partial x_1} & \cdots & \frac{\partial f_n(\boldsymbol{x_0})}{\partial x_n} \\
\vdots & \ddots & \vdots \\ \frac{\partial f_1(\boldsymbol{x_0})}{\partial x_1} & \cdots & \frac{\partial
f_1(\boldsymbol{x_0})}{\partial x_1} \\ \end{matrix}\right]$$

称为向量值函数 $\boldsymbol{f}$ 在点 $\boldsymbol{x}_0$ 的 Jacobian 矩阵。

映射微分中的 $m\times n$ 阶矩阵就是其 Jacobian 矩阵，因此
$\mathrm{d}\boldsymbol{f}(\boldsymbol{x}_0)=J\boldsymbol{f}(\boldsymbol{x}_0)\mathrm{d}\bol
dsymbol{x}$

复合映射的微分

设开集 $E\subset \mathbb{R}^l, D\subset \mathbb{R}^m$，映射 $\boldsymbol{g}: E\to D,
\boldsymbol{f}:D\to \mathbb{R}^n$，记复合映射为 $\boldsymbol{h}=\boldsymbol{f}\circ
\boldsymbol{g}: E\to R_n$.

如果 $\boldsymbol{g}$ 在 $\boldsymbol{u}_0\in E$ 处可微，$f$ 在
$\boldsymbol{x}_0=\boldsymbol{g}(\boldsymbol{u}_0)\in D$ 处可微，则复合映射 $\boldsymbol{h}$
在 $\boldsymbol{u}_0$ 处可微，且有
$J\boldsymbol{h}(\boldsymbol{u}_0)=J\boldsymbol{f}(\boldsymbol{x}_0)J\boldsymbol{g}(\boldsymb
ol{u}_0)$
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全微分形式不变性（一阶）

$z=f(u, v)$

$\mathrm{d}z=\frac{\partial z}{\partial u}\mathrm{d}u+\frac{\partial z}{\partial v}\mathrm{d}v$

$u, v$ 可为自变量或中间变量。

15.3 多元函数泰勒公式

高阶偏导

$z=f(x,y)$ 的二阶偏导为

（纯偏导）

$\frac{\partial}{\partial x}(\frac{\partial z}{\partial x})=\frac{\partial^2 z}{{\partial
x}^2}=f_{xx}(x, y)$

$\frac{\partial}{\partial y}(\frac{\partial z}{\partial y})=\frac{\partial^2 z}{{\partial
y}^2}=f_{yy}(x, y)$

（混合偏导）

$\frac{\partial}{\partial y}(\frac{\partial z}{\partial x})=\frac{\partial^2 z}{{\partial x}\partial
y}=f_{xy}(x, y)$

$\frac{\partial}{\partial x}(\frac{\partial z}{\partial y})=\frac{\partial^2 z}{\partial y\partial
x}=f_{yx}(x, y)$

混合偏导相等条件

若函数 $z=f(x, y)$ 的两个二阶混合偏导数 $f_{xy}, f_{yx}$ 在区域 $D$ 内连续，那么在该区域内这两个
二阶混合偏导数必相等。

凸区域

设 $D \subset \mathbb{R}^n$ 是区域。若联结 $D$ 中任意两点的线段都完全属于 $D$，即对于任意两点
$x_0, x_1\in D, \forall \lambda \in [0, 1]$，有 $x_0+\lambda(x_1-x_0)\in D$，则称 $D$ 为凸区域。

中值定理

二元函数 $f(x, y)$ 在凸区域 $D$ 上可微，则

对于 $D$ 内任意两点 $(x_0, y_0)$ 和 $(x_0+\Delta x, y_0+\Delta y)$，至少存在一个 $\theta\in(0, 1)$，
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使得

$f(x_0+\Delta x, y_0+\Delta y) - f(x_0, y_0) = f_x(x_0+\theta \Delta x, y_0+\theta \Delta y)\Delta x +
f_y(x_0+\theta \Delta x, y_0+\theta \Delta y)\Delta y$

多元：

设 $D \subset \mathbb{R}^n$ 是凸区域，$f:D\to \mathbb{R}$ 可微，任给 $\boldsymbol{a},
\boldsymbol{b} \in D$，存在 $\boldsymbol{\xi}\in D$，使得：

$f(\boldsymbol{b}) - f(\boldsymbol{a})=Jf(\boldsymbol{\xi})(\boldsymbol{b}-
\boldsymbol{a})$，$\boldsymbol{\xi}=\boldsymbol{a}+\theta(\boldsymbol{b}-\boldsymbol{a}),
\theta\in (0, 1)$。

泰勒公式

二元函数

$\mathbf{Th.\ \ 15.3.2}$

设函数 $f(x, y)$ 在点 $(x_0, y_0)$ 的邻域 $U$ 上具有 $k+1$ 阶连续偏导数，那么对于 $U$ 内每一点
$(x_0+\Delta x, y_0+\Delta y)$ 都有

$f(x_0+\Delta x, y_0+\Delta y)=f(x_0, y_0)+(\Delta x\frac{\partial}{\partial x}+\Delta
y\frac{\partial}{\partial y})f(x_0, y_0)+\frac{1}{2!}(\Delta x\frac{\partial}{\partial x}+\Delta
y\frac{\partial}{\partial y})^2f(x_0, y_0)+\cdots+\frac{1}{k!}(\Delta x\frac{\partial}{\partial
x}+\Delta y\frac{\partial}{\partial y})^k f(x_0, y_0)+R_k$

$R_k=\frac{1}{(k+1)!}(\Delta x\frac{\partial}{\partial x}+\Delta y\frac{\partial}{\partial
y})^{k+1}f(x_0+\theta\Delta x, y_0+\theta \Delta y), \quad \theta\in(0,1)$ 称为 Lagrange 余项。

$$(\Delta x\frac{\partial}{\partial x}+\Delta y\frac{\partial}{\partial
y})^{p}=\sum\limits_{i=0}^{p}C_p^i\frac{\partial^p f}{{\partial x}^{p-i}{\partial y}^i}(x_0,
y_0)(\Delta x)^{p-i}(\Delta y)^i$$

我觉得这东西其实就是一个算子 ⋯

只不过这东西要根据 Leibniz 公式来计算

↑ 好像说了些废话 ..

多元函数

$\mathbf{Th.\ \ 15.3.3}$

设函数 $f(x_1, x_2, \ldots, x_n)$ 在点 $(x_1^0, \ldots, x_n^0)$ 附近具有 $k+1$ 阶连续偏导数，那么该
点附近有

$$f(x_1^0+\Delta x_1, x_2^0+\Delta x_2,\ldots, x_n^0+\Delta x_n)=$$ $$f(x_1^0, x_2^0, \ldots,
x_n^0) +(\sum\limits_{i=1}^{n}\Delta x_i\frac{\partial}{\partial x_i})f(x_1^0, x_2^0, \ldots,
x_n^0)$$ $$+\cdots+\frac{1}{k!}(\sum\limits_{i=1}^{n}\Delta x_i\frac{\partial}{\partial x_i})^k
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f(x_1^0, x_2^0, \ldots, x_n^0)+R_k $$

$R_k = \frac{1}{(k+1)!}(\sum\limits_{i=1}^{n}\Delta x_i\frac{\partial}{\partial x_i})^{k+1}
f(x_1^0+\theta\Delta x_1, x_2^0+\theta\Delta x_2, \ldots, x_n^0+\theta\Delta x_n), \quad \theta
\in(0, 1)$

称 Lagrange 余项。

多重指标及指标记号的泰勒公式

称 $\boldsymbol{\alpha}=(\alpha_1, \ldots, \alpha_n)$ 为一个多重指标，记
$|\boldsymbol{\alpha}|=\alpha_1+\cdots+\alpha_n$，$\boldsymbol{\alpha}!=\alpha_1!\alpha_2!\cdot
s\alpha_n!$。

对 $\boldsymbol{x}=(x_1, \cdots, x_n)$，记
$\boldsymbol{x}^{\boldsymbol{\alpha}}=x_1^{\alpha_1}\cdots x_n^{\alpha_n}$

则
$(x_1+\cdots+x_n)^k=\sum\limits_{|\boldsymbol{\alpha}|=k}\frac{k!}{\alpha!}\boldsymbol{x}^{\b
oldsymbol{\alpha}}$

使用多重指标 $\boldsymbol{\alpha}$ 的高阶偏导数

$\boldsymbol{D}^{\boldsymbol{\alpha}}f(\boldsymbol{x})=\frac{\partial^{|\boldsymbol{\alpha}|}f
}{\partial x_1^{\alpha_1}\partial x_2^{\alpha_2}\cdots\partial x_n^{\alpha_n}}(x)$

$\mathbf{Th.\ \ 15.3.4}$

$D\subset \mathbb{R}^n$ 是凸区域，$f:D\to \mathbb{R}$ 具有 $m+1$ 阶连续偏导数，存在 $\theta
\in (0, 1)$ 使得

$$f(\boldsymbol{x}-
\boldsymbol{x}_0)=\sum\limits_{k=0}^{m}{\sum\limits_{|\boldsymbol{\alpha}|=k}}{\frac{\boldsy
mbol{D}^{\boldsymbol{\alpha}}f(\boldsymbol{x}_0)}{\boldsymbol{\alpha}!}}(\boldsymbol{x}-
\boldsymbol{x}_0)^{\boldsymbol{\alpha}}+R_m$$

$$R_m={\sum\limits_{|\boldsymbol{\alpha}|=k+1}}{\frac{\boldsymbol{D}^{\boldsymbol{\alpha}}f
(\boldsymbol{x}_0+\theta(\boldsymbol{x}-
\boldsymbol{x_0}))}{\boldsymbol{\alpha}!}}(\boldsymbol{x}-
\boldsymbol{x}_0)^{\boldsymbol{\alpha}}$$

$$f(\boldsymbol{x})=f(\boldsymbol{a})+Jf(\boldsymbol{a})(\boldsymbol{x}-\boldsymbol{a})
+\frac{1}{2}(x_1-a_1, \cdots, x_n-a_n)\left[\begin{matrix} \frac{\partial^2
f(\boldsymbol{a})}{{\partial x_1}^2} & \cdots & \frac{\partial^2 f(\boldsymbol{a})}{{\partial
x_1}\partial x_n}\\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f(\boldsymbol{a})}{\partial x_n\partial
x_1} & \cdots & \frac{\partial^2 f(\boldsymbol{a})}{{\partial x_n}^2}
\end{matrix}\right]\left(\begin{matrix} x_1-a_1\\ \vdots\\x_n-a_n \end{matrix}\right) $$

其中二次项矩阵一般记作 $Hess(f)=(\frac{\partial^2 f(\boldsymbol{a})}{\partial x_i\partial
x_j})_{n\times n}$，称为 $f$ 在 $\boldsymbol{a}$ 处的 Hessian 矩阵。
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15.4 隐函数定理

隐函数存在唯一性定理

若函数 $F(x, y)$ 满足下列条件：

函数 $F$ 在以 $P_0(x_0, y_0)$ 为内点的某一区域 $D\subset \mathbb{R}^2$ 上连续1.
$F(x_0, y_0) = 0$2.
在 $D$ 内存在连续的偏导数 $F_y(x, y)$3.
$F_y(x_0, y_0) \neq 0$4.

则在 $P_0$ 的某邻域 $U(P_0)\subset D$ 内，方程 $F(x, y)=0$ 唯一确定了一个定义在某区间 $(x_0-
\alpha, x_0+\alpha)$ 内的函数 $y=f(x)$，使得

$f(x_0)=y_0, x\in (x_0-\alpha, x_0+\alpha)$ 时 $(x, f(x))\in U(P_0)$ 且 $F(x, f(x))\equiv 0$1.
$f(x)$ 在 $(x_0-\alpha,x_0+\alpha)$ 内连续。2.

隐函数可微性定理

若函数 $F(x, y)$ 满足隐函数存在唯一性定理钟的 4 个条件，再加上 $F_x(x, y)$ 在 $D$ 内存在且连续，则
由方程 $F(x, y)=0$ 所确定的隐函数 $y=f(x)$ 在 $(x_0-\alpha, x_0+\alpha)$ 内有连续的导函数，且
$f'(x)=-\frac{F_x(x, y)}{F_y(x, y)}$

二元隐函数唯一存在与连续可微性定理

若函数 $F(x, y)$ 满足下列条件：

函数 $F$ 在以 $P_0(x_0, y_0, z_0)$ 为内点的某一区域 $D\subset \mathbb{R}^3$ 上连续1.
$F(x_0, y_0, z_0) = 0$2.
在 $D$ 内存在连续的偏导数 $F_x, F_y, F_z$3.
$F_z(x_0, y_0, z_0) \neq 0$4.

则在 $P_0$ 的某邻域 $U(P_0)\subset D$ 内，方程 $F(x, y, z)=0$ 唯一确定了一个定义在某区间 $U((x_0,
y_0))\subset \mathbb{R}^2$ 内的连续函数 $z=f(x, y)$，使得

$f(x_0, y_0)=z_0, (x, y)\in U((x_0, y_0))$ 时 $(x, y, f(x, y))\in U(P_0)$ 且 $F(x, y, f(x, y))\equiv 0$1.
$z=f(x, y)$ 在 $U((x_0, y_0))$ 有连续的偏导数，且 $\frac{\partial z}{\partial x}=-\frac{\partial2.
x}{\partial z}, \frac{\partial z}{\partial y}=-\frac{\partial y}{\partial z}$。

隐函数组定理

定义 $$ \frac{\partial (F, G)}{\partial (u, v)} = \left|\begin{matrix} F_u & F_v \\ G_u & G_v \\
\end{matrix}\right|\neq 0 $$

若：

函数 $F(x, y, u, v), G(x, y, u, v)$ 在以 $P_0(x_0, y_0, u_0, v_0)$ 为内点的某一区域 $V\subset1.
\mathbb{R}^4$ 上连续
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$F(x_0, y_0, u_0, v_0) = G(x_0, y_0, u_0, v_0) = 0$2.
在 $V$ 内 $F, G$ 存在一阶连续偏导数3.
$\left.{\frac{\partial(F, G)}{\partial(u, v)}}\right|_{P_0} \neq 0$4.

则在 $P_0$ 的某邻域 $U(P_0)\subset V$ 内，方程 $F(x, y, u, v)=G(x, y, u, v)=0$ 唯一确定了一个定义在
某区间 $U((x_0, y_0))\subset \mathbb{R}^2$ 内的两个隐函数 $u=f(x, y), v=g(x, y)$，使得

$f(x_0, y_0)=u_0, g(x_0, y_0)=v_0$，且当 $(x, y)\in U((x_0, y_0))$ 时 $(x, y, f(x, y), g(x, y))\in1.
U(P_0)$ 且 $F(x, y, f(x, y), g(x, y))\equiv 0\equiv G(x, y, f(x, y), g(x, y))$
$u=f(x, y), v=g(x, y)$ 在 $U((x_0, y_0))$ 内连续。2.
$u, v$ 在 $U((x_0, y_0))$ 内有一阶连续偏导，且3.

$\frac{\partial u}{\partial x}=-\frac{1}{J}\frac{\partial (F, G)}{\partial (x, v)}$

$\frac{\partial v}{\partial x}=-\frac{1}{J}\frac{\partial (F, G)}{\partial (u, x)}$

$\frac{\partial u}{\partial y}=-\frac{1}{J}\frac{\partial (F, G)}{\partial (y, v)}$

$\frac{\partial v}{\partial y}=-\frac{1}{J}\frac{\partial (F, G)}{\partial (u, y)}$

15.5 隐函数定理的几何应用

平面曲线的切线与法线

$F(x, y)=0$

切线：$y - y_0=f'(x_0)(x-x_0)$

法线：$y - y_0=-\frac{1}{f'(x_0)}(x-x_0)$

切线：$F_x(x_0, y_0)(x-x_0)+F_y(x_0, y_0)(y-y_0)=0$

法线：$F_y(x_0, y_0)(x-x_0)-F_x(x_0, y_0)(y-y_0)=0$

空间曲线的切线与法平面

切线：$\frac{x-x_0}{x'(t_0)}=\frac{y-y_0}{y'(t_0)}=\frac{z-z_0}{z'(t_0)}$

法平面：$x'(t_0)(x-x_0)+y'(t_0)(y-y_0)+z'(t_0)(z-z_0)=0$

切线：

$$ \frac{x-x_0}{\left.{\frac{\partial(F, G)}{\partial(y, z)}}\right|_{M_0}}=\frac{y-
y_0}{\left.{\frac{\partial(F, G)}{\partial(z, x)}}\right|_{M_0}}=\frac{z-z_0}{\left.{\frac{\partial(F,
G)}{\partial(x, y)}}\right|_{M_0}} $$

法平面：

$$ (x-x_0)\left.{\frac{\partial(F, G)}{\partial(y, z)}}\right|_{M_0}+(y-y_0)\left.{\frac{\partial(F,
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G)}{\partial(z, x)}}\right|_{M_0}+(z-z_0){\left.{\frac{\partial(F, G)}{\partial(x, y)}}\right|_{M_0}}=0
$$

曲面的切平面与法线

$F(x, y, z)=0$

切平面：

$F_x(x_0, y_0, z_0)(x-x_0)+F_y(x_0, y_0, z_0)(y-y_0)+F_z(x_0, y_0, z_0)(z-z_0)=0$

法线：

$\frac{x-x_0}{F_x(x_0, y_0, z_0)}=\frac{y-y_0}{F_y(x_0, y_0, z_0)}=\frac{z-z_0}{F_z(x_0, y_0,
z_0)}$

15.6 多元函数的极值问题

矩阵的正定性

定义

$\forall \boldsymbol{x}\in \mathbb{R}^n$，都有

$\boldsymbol{x}'A\boldsymbol{x}>0$，则称 $A$ 为正定矩阵。

$\boldsymbol{x}'A\boldsymbol{x}>0$，则称 $A$ 为半正定矩阵。

$\boldsymbol{x}'A\boldsymbol{x}>0$，则称 $A$ 为负定矩阵。

$\boldsymbol{x}'A\boldsymbol{x}>0$，则称 $A$ 为半负定矩阵。

否则属于不定矩阵。

判定

$A$ 正定 $\iff$ 所有顺序主子式大于 0

$A$ 正定 $\iff$ 所有特征值大于 0

$A$ 不定 $\iff a_{11}a_{22}-a_{12}^2<0$.

二元函数的 Hessian 矩阵

函数 $f(x, y)$ 在 $P_0$ 的邻域内有一二阶连续偏导，记 $A=f_{xx}(x_0, y_0), B=f_{xy}(x_0, y_0),
C=f_{yy}(x_0, y_0)$，并记 $$H_f(P_0)=\left|\begin{matrix}A&B\\B&C\end{matrix}\right|$$ ，称为
Hessian 矩阵。
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二元函数极值定义

$z=f(x,y)$ 在 $(x_0, y_0)$ 的某邻域内有定义，对邻域内的任一点 $(x, y)$，

均有 $f(x, y)\le f(x_0, y_0)$，则称函数在 $(x_0, y_0)$ 有极大值。 均有 $f(x, y)\ge f(x_0, y_0)$，则称函数
在 $(x_0, y_0)$ 有极小值。

二元函数取得极值的条件

必要条件

$z=f(x,y)$ 在点 $(x_0, y_0)$ 有偏导，且在点 $(x_0, y_0)$ 有极值，则它在该点的偏导数必为零。

稳定点充分条件

$z=f(x,y)$ 在点 $P_0(x_0, y_0)$ 的邻域内有一二阶连续偏导，且 $P_0$ 是 $f$ 的稳定点。

$H_f(P_0)$ 正定时，$f$ 在 $P_0$ 取极小值

$H_f(P_0)$ 负定时，$f$ 在 $P_0$ 取极大值

$H_f(P_0)$ 不定时，$f$ 在 $P_0$ 不取极值

判定条件

记 $A=f_{xx}(x_0, y_0), B=f_{xy}(x_0, y_0), C=f_{yy}(x_0, y_0)$

$AC-B^2>0\Rightarrow$

$a<0\Rightarrow$ 极大值 $, a>0\Rightarrow$ 极小值

$AC-B^2<0\Rightarrow$ 无极值

多元函数

一阶偏导均为零，存在二阶连续偏导。

Hessian 矩阵正定：极小

Hessian 矩阵负定：极大

15.7 条件极值
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拉格朗日乘数法

求 $z=f(x, y)$ 在条件 $\varphi(x, y)=0$ 下的可能极值点：
先构造函数 $L(x, y, \lambda) = f(x, y)+\lambda\varphi(x, y)=0$，再由
$$\begin{cases}L_x=f_x(x, y)+\lambda\varphi_x(x, y)=0\\ L_y=f_x(x, y)+\lambda\varphi_y(x, y)=0\\
L_\lambda=\varphi(x, y)=0\end{cases}$$
解出 $x, y, \lambda$，其中 $x, y$ 就是可能的极值点的坐标。

一般形式拉格朗日乘数法

条件组 $\varphi_k(x_1, x_2, \ldots, x_n)=0, k=1, 2, \ldots, m(m<n)$ 的限制下，求 $y=f(x_1, x_2,
\ldots, x_n)$ 的极值。

其拉格朗日函数是：$L(x_1, x_2,\ldots, x_n, \lambda_1, \lambda_2, \ldots, \lambda_m) = f(x_1,
x_2,\ldots, x_n)+\sum\limits_{k=1}^{m}\lambda_k\varphi_k(x_1, x_2,\ldots, x_n)$

设 $f$ 与 $\varphi_k$ 均在 $D$ 内有连续的一阶偏导，若 $P_0(x_1^{(0)},\ldots, x_n^{(0)})\in D$ 是上
述问题的极值点，且 Jacobian 矩阵

$$\left[\begin{matrix} \frac{\partial \varphi_1}{\partial x_1} & \cdots & \frac{\partial
\varphi_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial \varphi_m}{\partial x_1} & \cdots &
\frac{\partial \varphi_m}{\partial x_n} \end{matrix}\right] $$

行满秩，则存在 $m$ 个常数 $\lambda_1^{(0)}, \lambda_2^{(0)}, \ldots, \lambda_m^{(0)}$，使得
$(x_1^{(0)}, x_2^{(0)}, \ldots, x_n^{(0)}, \lambda_1^{(0)}, \lambda_2^{(0)}, \ldots,
\lambda_m^{(0)})$ 为上述拉格朗日函数的稳定点。

判定条件

消去限定条件，得到函数，求此函数 Hessian 矩阵，判断其正定性。1.
$HL(P_0)=\left(\frac{\partial^2L}{\partial x_j\partial x_k}\right)_{P_0}$，2.

$HL(P_0)$ 正定，取条件极小值1.
$HL(P_0)$ 负定，取条件极大值2.
证明：泰勒3.

确有极值，仅有一个稳定点，在定义域的边界上不取/趋极值，则稳定点就是条件极值点。3.

16 重积分

16.1 二重积分的定义与基本性质

区域的面积

有界区域 $P\subset\mathbb{R}^2$，用直线网 $T$ 将其分割。
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选取方式：

$\Delta_i$ 上的点均为 $P$ 的内点1.
$\Delta_i$ 上至少有一点为 $P$ 的内点，且 $P$ 的任意边界点均含于某 $\Delta_i$2.

第一类面积：$s_{_P}(T)$

第二类面积：$S_{_P}(T)\ge s_{_P}(T)$

数集 $\{s_{_P}(T)\}$ 有上确界，$\{s_{_P}(T)\}$ 有下确界。
记 $\underline{I}_{_P}=\sup\limits_{T}\{s_{_P}(T)\}, \overline{I}_{_P}=\inf\limits_{T}\{S_{_P}(T)\}$
易见 $0\le \underline{I}_{_P} \le \overline{I}_{_P}$

称 $\underline{I}_{_P}$ 为 $P$ 的内面积，$\overline{I}_{_P}$ 为 $P$ 的外面积。

若 $\underline{I}_{_P} = \overline{I}_{_P}$，则称 $P$ 为可求面积的图形，将其共同值作为 $P$ 的面积。

$P$ 可求面积 $\iff \forall \varepsilon>0, \exists T, \mathrm{s.t.}\; S_{_P}(T)-s_{_P}(T)<\varepsilon$

二重积分

$\iint\limits_D f(x, y)\mathrm{d}\sigma = \lim\limits_{\lambda\to 0}\sum\limits_{i=1}^{n}f(\xi_i,
\eta_i)\Delta\sigma_i$

直角坐标系下可写为：

$\iint\limits_{D}f(x,y)\mathrm{d}\sigma=\iint\limits_{D}f(x,y)\mathrm{d}x\mathrm{d}y$

二重积分的存在性

$\mathbf{Th.\;\; 16.2.1}$

$f(x, y)$ 在 $D$ 上可积，则 $f(x, y)$ 在 $D$ 上有界。

$\mathbf{Th.\;\; 16.2.2}$

$f(x, y)$ 在 $D$ 上可积 $\iff \lim\limits_{\|T\|\to 0}S(T)=\lim\limits_{\|T\|\to 0}s(T)$。

$\mathbf{Th.\;\; 16.2.3}$

$f(x, y)$ 在 $D$ 上可积 $\iff \forall \varepsilon>0, \exists T, \mathrm{s.t.}\;\;S(t)-s(T)<\varepsilon$。

$\mathbf{Th.\;\; 16.2.4}$

有界闭域上的连续函数必可积。

$\mathbf{Th.\;\; 16.2.5}$

$f(x, y)$ 是定义在有界闭域上的有界函数，若其不连续点都落在有限条光滑曲线上，则 $f(x, y)$ 在该有
界闭域内可积。
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二重积分性质

保数乘

$\iint\limits_{D}kf(x,y)\mathrm{d}x\mathrm{d}y=k\iint\limits_{D}f(x,y)\mathrm{d}x\mathrm{d}y$

保加

$\iint\limits_{D}[f(x,y)\pm g(x,
y)]\mathrm{d}x\mathrm{d}y=\iint\limits_{D}f(x,y)\mathrm{d}x\mathrm{d}y\pm\iint\limits_{D}g(x,
y)\mathrm{d}x\mathrm{d}y$

区域可加性

$\iint\limits_{D}f(x,y)\mathrm{d}x\mathrm{d}y=\iint\limits_{D_1}f(x,y)\mathrm{d}x\mathrm{d}y+\
iint\limits_{D_2}f(x,y)\mathrm{d}x\mathrm{d}y$

$(D=D_1\cup D_2, D_1\cap D_2=\varnothing)$

常数函数

面积 $\sigma = \iint\limits_{D}1\mathrm{d}x\mathrm{d}y =
\iint\limits_{D}\mathrm{d}x\mathrm{d}y$

保序性

在 $D$ 上 $f(x, y)\le g(x, y)$，则有

$\iint\limits_{D}f(x,y)\mathrm{d}x\mathrm{d}y\le \iint\limits_{D}g(x,y)\mathrm{d}x\mathrm{d}y$

特别地，$\left|\iint\limits_{D}{f(x,y)\mathrm{d}x\mathrm{d}y}\right|\le
\iint\limits_{D}{\left|f(x,y)\right|\mathrm{d}x\mathrm{d}y}$

估值不等式

在闭区域 $D$ 上 $m\le f(x, y)\le M$，$\sigma$ 为 $D$ 的面积，则有

$m\sigma\le \iint\limits_{D}f(x,y)\mathrm{d}x\mathrm{d}y\le M\sigma$

二重积分中值定理

在闭区域 $D$ 上 $f(x, y)$ 连续，$\sigma$ 为 $D$ 的面积，则在 $D$ 上至少存在一点 $(\xi, \eta)$ 使得
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$\iint\limits_{D}f(x,y)\mathrm{d}x\mathrm{d}y= \sigma f(\xi,\eta)$

16.2 二重积分的计算

矩形区域上二重积分计算

累次积分

$D=[a, b]\times[c,d],\; f:D\to \mathbb{R}$，若对 $\forall x\in[a, b]$，$f(x, y)$ 在 $[c, d]$ 上可积，那么
可得 $$I(x)=\int_c^df(x, y)\mathrm{d}y,\; x\in[a,b]$$ 若 $I(x)$ 也在 $[a, b]$ 上可积，则得积分

$$\int_a^b I(x)\mathrm{d}x$$ ，称为累次积分。记为 $$\int_a^b\mathrm{d}x\int_c^d f(x,
y)\mathrm{d}y$$

存在条件

$D=[a, b]\times[c,d],\; f:D\to \mathbb{R}$ 在 $D$ 上可积，且对 $\forall x\in[a, b]$，$\int_c^d f(x,
y)\mathrm{d}y$ 都存在，则累次积分存在，且

$$\iint\limits_D f(x, y) \mathrm{d}\sigma=\int_a^b\mathrm{d}x\int_c^d f(x, y)\mathrm{d}y$$

$D=[a, b]\times[c,d],\; f:D\to \mathbb{R}$ 在 $D$ 上可积，且对 $\forall y\in[c, d]$，$\int_a^b f(x,
y)\mathrm{d}x$ 都存在，则累次积分存在，且

$$\iint\limits_D f(x, y) \mathrm{d}\sigma=\int_c^d\mathrm{d}y\int_a^b f(x, y)\mathrm{d}x$$

$f$ 在 $D=[a, b]\times[c,d]$ 上连续，则有

$$\iint\limits_D f(x, y) \mathrm{d}\sigma=\int_c^d\mathrm{d}y\int_a^b f(x,
y)\mathrm{d}x=\int_a^b\mathrm{d}x\int_c^d f(x, y)\mathrm{d}y$$

一般区域上二重积分计算

$x$ 型区域 $D=\{(x,y)\mid y_1(x)\le y\le y_2(x),a\le x\le b\}$

$y$ 型区域 $D=\{(x,y)\mid x_1(y)\le x\le x_2(y),c\le y\le d\}$

一般将一般区域分解成有限个无公共内点的 $x$ 或 $y$ 型区域处理。

存在定理

$f(x,y)$ 在 $x$ 型区域 $D$ 上连续，$y_1(x), y_2(x)$ 在 $[a, b]$ 上连续，则

$$\iint\limits_D
f(x,y)\mathrm{d}\sigma=\int_a^b\mathrm{d}x\int_{y_1(x)}^{y_2(x)}f(x,y)\mathrm{d}y$$
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$f(x,y)$ 在 $y$ 型区域 $D$ 上连续，$x_1(y), x_2(y)$ 在 $[c, d]$ 上连续，则

$$\iint\limits_D
f(x,y)\mathrm{d}\sigma=\int_c^d\mathrm{d}y\int_{x_1(y)}^{x_2(y)}f(x,y)\mathrm{d}x$$

二重积分的变量变换

简化被积函数

简化积分域（优先）

变量变换公式

$\mathbf{Th.\;\;}$

$f(x, y)$ 在有界闭域 $D$ 上可积，若变换 $T: x=x(u, v), y=y(u,v)$ 将 $uv$ 平面上按段光滑封闭曲线所
围的区域 $\Delta$ 一对一的映成 $xy$ 平面上的闭区域 $D$，函数 $x(u, v), y(u, v)$ 在 $\Delta$ 内分别具
有一阶连续偏导数，且 $J(u, v)=\frac{\partial (x, y)}{\partial (u, v)}\neq 0, \forall (u, v)\in \Delta$，则

$$\iint\limits_{D}f(x, y)\mathrm{d}x\mathrm{d}y=\iint\limits_{\Delta}f(x(u, v), y(u, v))\left|J(u,
v)\right|\mathrm{d}u\mathrm{d}v$$

面积变化率 $J=\left|\frac{\partial(x, y)}{\partial(u, v)}\right|$

在 $\Delta$ 内个别点上或在一条曲线上为零公式仍成立。

极坐标换元

含有 $x^2+y^2$ 或边界表达式有该项，常用极坐标变换。

$$\iint\limits_{D}f(x, y)\mathrm{d}x\mathrm{d}y=\iint\limits_{\Delta}f(r\cos \theta,
r\sin\theta)r\mathrm{d}r\mathrm{d}\theta$$

广义极坐标变换

$$\iint\limits_{D}f(x, y)\mathrm{d}x\mathrm{d}y=\iint\limits_{\Delta}f(ar\cos \theta,
br\sin\theta)abr\mathrm{d}r\mathrm{d}\theta$$

16.3 三重积分

定义

$f(x, y, z)$ 是定义在三维空间可求体积的有界闭区域 $V$ 上的函数，$A$ 是某确定常数，若

$$\forall \varepsilon>0, \exists \delta>0, \mathrm{s.t.}\; \forall T, \|T\|<\delta\Rightarrow \left(\forall
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(\xi_i, \eta_i, \zeta_i)\in V_i, \left|\sum\limits_{i=1}^{n}f(\xi_i, \eta_i, \zeta_i)\Delta V_i-
A\right|<\varepsilon\right)$$

则称 $f(x, y, z)$ 在 $V$ 上可积，$A$ 称为 $f$ 在 $V$ 上的三重积分，记为

$$A=\iiint\limits_{V}f(x, y, z)\mathrm{d}V$$

或

$$A=\iiint\limits_{V}f(x, y, z)\mathrm{d}x\mathrm{d}y\mathrm{d}z$$

三重积分的计算

$f(x, y, z)$ 在 $V=[a, b]\times[c,d]\times[e,h]$ 上的三重积分存在，且对任何 $(x, y) \in D, D=[a,
b]\times [c, d]$，定积分 $F(y, z) = \int_e^h f(x, y, z)\mathrm{d}z$ 存在，则
$\iint\limits_{D}\mathrm{d}x\mathrm{d}y\int_e^h f(x, y, z)\mathrm{d}z$ 存在，且

$$\iiint\limits_{V}f(x, y,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z=\iint\limits_{D}\mathrm{d}x\mathrm{d}y\int_e^h f(x, y,
z)\mathrm{d}z$$

$f(x, y, z)$ 在 $V=[a, b]\times[c,d]\times[e,h]$ 上的三重积分存在，且对任何 $z \in [e, h]$，二重积分
$I(z) = \iint\limits_{D} f(x, y, z)\mathrm{d}x\mathrm{d}y$ 存在，$D=[a,b]\times[c,d]$，则 $\int_e^h
\mathrm{d}z\iint\limits_{D} f(x, y, z)\mathrm{d}x\mathrm{d}y$ 存在，且

$$\iiint\limits_{V}f(x, y, z)\mathrm{d}x\mathrm{d}y\mathrm{d}z=\int_e^h
\mathrm{d}z\iint\limits_{D} f(x, y, z)\mathrm{d}x\mathrm{d}y$$

$$\iiint\limits_{V}f(x, y, z)\mathrm{d}x\mathrm{d}y\mathrm{d}z=\int_a^b \mathrm{d}x\int_c^d
\mathrm{d}y\int_e^h f(x, y, z)\mathrm{d}z$$

例

$\mathbf{Prove:}$ $$\int_0^x \mathrm{d}v\int_0^v\mathrm{d}u\int_0^uf(t)\mathrm{d}t =
\frac{1}{2}\int_0^x(x-t)^2f(t)\mathrm{d}t$$

$\mathbf{Proof:}$

$$\because \int_0^v\mathrm{d}u\int_0^uf(t)\mathrm{d}t=\int_0^v\mathrm{d}t\int_t^v f(t)
\mathrm{d}u=\int_0^v (v-t) f(t) \mathrm{d}t$$ $$\therefore \int_0^x
\mathrm{d}v\int_0^v\mathrm{d}u\int_0^uf(t)\mathrm{d}t = \int_0^x \mathrm{d}v\int_0^v (v-t)
f(t) \mathrm{d}t$$ $$= \int_0^x \mathrm{d}t\int_t^x (v-t) f(t) \mathrm{d}v=\int_0^x
\mathrm{d}t\int_t^x (v-t) f(t) \mathrm{d}v$$ $$=\int_0^x \mathrm{d}t\left[\frac{1}{2}(v-t)^2
f(t)\right]_t^x=\frac{1}{2}\int_0^x(x-t)^2 f(t)\mathrm{d}t $$

三重积分的换元



2026/01/14 03:02 37/49 工科数学分析（2）

CVBB ACM Team - https://wiki.cvbbacm.com/

变量变换公式

$f(x, y, z)$ 在有界闭区域 $V$ 上可积，若变换 $T: x=x(u, v, w), y=y(u, v, w), z=z(u, v, w)$，将 $uvw$
空间中的区域 $V'$ 一对一的映成 $xyz$ 空间中的区域 $V$，函数 $x(u, v, w), y(u, v, w), z(u, v, w)$ 及它
们的一阶偏导在 $V'$ 内连续，且函数的行列式 $J(u, v, w)=\left|\frac{\partial(x, y, z)}{\partial(u, v,
w)}\right|\neq 0, (u, v, w)\in V'$，则

$$\iiint\limits_{V}f(x, y, z)\mathrm{d}x\mathrm{d}y\mathrm{d}z=$$ $$\iiint\limits_{V'}f\left(x_{(u,
v, w)}, y_{(u, v, w)}, z_{(u, v, w)}\right)\left|J(u, v,
w)\right|\mathrm{d}u\mathrm{d}v\mathrm{d}w$$

柱面坐标变换

$$\begin{cases} x=r\cos \theta,\\ y=r\sin \theta,\\ z=z. \end{cases}$$

Jacobian 行列式：

$$J=\frac{\partial(x, y, z)}{\partial(r, \theta, z)}=\left|\begin{matrix} \cos\theta & -r\sin \theta & 0\\
\sin\theta & -r\cos \theta & 0\\ 0 & 0 & 1 \end{matrix}\right|=r$$

$$\iiint\limits_{V}f(x, y, z)\mathrm{d}x\mathrm{d}y\mathrm{d}z=$$
$$\iiint\limits_{V'}f\left(r\cos\theta, r\sin\theta,
z\right)r\mathrm{d}r\mathrm{d}\theta\mathrm{d}z$$

球坐标变换

$$\begin{cases} x=r\sin \varphi \cos \theta,\\ y=r\sin \varphi \sin \theta,\\ z=r\cos \varphi.
\end{cases}$$

Jacobian 行列式：

$$J=\frac{\partial(x, y, z)}{\partial(r, \varphi, \theta)}= \left|\begin{matrix} \sin\varphi\cos\theta
&r\cos\varphi\cos\theta & -r\sin\varphi\sin\theta\\ \sin\varphi\sin\theta &r\cos\varphi\sin\theta &
r\sin\varphi\cos\theta\\ \cos\varphi & -r\sin\varphi & 0\\ \end{matrix}\right|=r^2\sin \varphi$$

广义球坐标变换

球坐标变换

$$\begin{cases} x=ar\sin \varphi \cos \theta,\\ y=br\sin \varphi \sin \theta,\\ z=cr\cos \varphi.
\end{cases}$$

Jacobian 行列式：

$$J=\frac{\partial(x, y, z)}{\partial(r, \varphi, \theta)}=abcr^2\sin \varphi$$
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16.4 重积分应用

曲面方程

显式

$z=z(x, y), (x, y)\in D$

隐式

$F(x, y, z)=0, (x, y, z)\in V$

通常假设 $F, F_x, F_y, F_z$ 在 $V$ 上连续。

曲面在点的法向量的各分量即为偏导。

参数方程

设 $\Delta$ 是 $uv$ 平面上的一个区域，则称

$\Sigma: \vec{r}=\vec{r}(u, v), (u, v)\in \Delta$

为曲面的向量方程，其中 $\vec{r}(u, v)\in \mathbb{R}^3$。

如记 $\vec{r}=(x, y, z)$，则 $(1)$ 又可表示成

$$\begin{cases} x=x(u, v)\\ y=y(u, v)\\ z=z(u, v) \end{cases}, \quad (u, v)\in \Delta $$

称此为曲面的参数方程。

曲面面积

方程：$z=f(x, y), (x, y)\in D$，其中 $D$ 是可求面积的平面有界区域，$f(x, y)$ 在 $D$ 上有连续的一阶偏
导。

$$S=\iint\limits_{D}\sqrt{1+f_x^2+f_y^2}\mathrm{d}x\mathrm{d}y$$

方程：$x(u, v), y(u, v), z(u, v),\; (u, v)\in D$，$D$ 可求面积，$x, y, z$ 在 $D$ 上有一阶连续偏
导，$\frac{\partial(x,y)}{\partial(u,v)},\frac{\partial(y,z)}{\partial(u,v)},\frac{\partial(z,x)}{\partial(u,v)}$
中至少一个不为零，则曲面 $S$ 的面积为

$$\varDelta S=\iint\limits_{D}\sqrt{EG-F^2}\mathrm{d}u\mathrm{d}v,$$

$$E=x_u^2+y_u^2+z_u^2,$$
$$F=x_ux_v+y_uy_v+z_uz_v,$$
$$G=x_v^2+y_v^2+z_v^2.$$
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（第一基本量???）

重心

平面区域

$$ \bar{x}=\frac{\iint\limits_{D}x\rho(x, y)\mathrm{d}\sigma}{\iint\limits_{D}\rho(x,
y)\mathrm{d}\sigma}, \bar{y}=\frac{\iint\limits_{D}y\rho(x,
y)\mathrm{d}\sigma}{\iint\limits_{D}\rho(x, y)\mathrm{d}\sigma} $$

空间区域

$$ \bar{x}=\frac{\iiint\limits_{V}x\rho(x, y,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z}{\iiint\limits_{V}\rho(x, y,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z},$$ $$\bar{y}=\frac{\iiint\limits_{V}y\rho(x, y,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z}{\iiint\limits_{V}\rho(x, y,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z},$$ $$\bar{z}=\frac{\iiint\limits_{V}z\rho(x, y,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z}{\iiint\limits_{V}\rho(x, y,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z} $$

转动惯量

$$J=\iiint\limits_{V}r^2(x, y, z)\rho(x ,y, z)\mathrm{d}x\mathrm{d}y\mathrm{d}z$$

引力

质点 $A(\xi, \eta, \zeta)$

$$ F=F_x\vec{i}+F_y\vec{j}+F_z\vec{k}$$ $$F_x=k\iiint\limits_{V}\frac{x-\xi}{r^3}\rho(x, y,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z,$$ $$F_y=k\iiint\limits_{V}\frac{y-\eta}{r^3}\rho(x, y,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z,$$ $$F_z=k\iiint\limits_{V}\frac{z-\zeta}{r^3}\rho(x, y,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z, $$ $$r=\sqrt{(x-\xi)^2+(y-\eta)^2+(z-\zeta)^2} $$

17 曲线积分

17.1 第一型曲线积分

定义

$L$ 为可求长的曲线弧，函数 $f(x, y)$ 在 $L$ 上有界，用 $L$ 上的点将 $L$ 分割，若极限
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$$\lim\limits_{\max \varDelta s_i\to 0}\sum\limits_{i=1}^{n}f(\xi_i, \eta_i)\cdot\varDelta s_i = A$$

且 $A$ 为有限数，取值与分割及取样点的选取无关，则称 $f(x, y)$ 在 $L$ 上可积，称 $A$ 为函数 $f(x,
y)$ 在曲线弧 $L$ 上对弧长的曲线积分，或第一型曲线积分，记作

$$\int_L f(x, y) \mathrm{d}s$$

类似地，三维空间上有：

$$\int_L f(x, y, z) \mathrm{d}s$$

存在条件

$f(x, y)$ 在光滑曲线弧 $L$ 上连续时，第一型曲线积分 $\int_L f(x, y)\mathrm{d}s$ 存在。

性质

线性性

$$\int_L \sum c_if_i\mathrm{d}s = \sum c_i\int_L f_i\mathrm{d}s$$

路径可加

$$\int_L f\mathrm{d}s=\sum\int_{L_i}f\mathrm{d}s$$

约定

$L$ 为闭曲线时，函数 $f(x, y)$ 在 $L$ 上的第一型曲线积分记为

$$\oint\limits_L f(x, y)\mathrm{d}s$$

计算

设光滑曲线 $L: \begin{cases}x=\varphi(t),\\y=\psi(t),\end{cases}\;t\in[\alpha, \beta]$，$f(x, y)$ 在 $L$
上有定义且连续，则：

$$\int_L f(x,y)\mathrm{d}s = \int_\alpha^\beta f[\varphi(t),
\psi(t)]\sqrt{\varphi'^{2}(t)+\psi'^{\,2}(t)}\mathrm{d}t$$

17.2 第二型曲线积分
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定义

$L$ 为平面内从点 $A$ 到 $B$ 的一条可求长的曲线弧，函数 $P(x, y), Q(x, y)$ 在 $L$ 上有定义，对 $L$
的任一分割 $T$，设小段弧长为 $\varDelta s_i$，分割的细度 $\|T\|=\max\limits_{1\le i\le n}\varDelta
s_i$，任取 $(\xi_i, \eta_i)\in \overline{M_{i-1}M_i}$，若极限

$$\lim\limits_{\|T\|\to 0} \sum\limits_{i=1}^{n}P(\xi_i, \eta_i)\varDelta x_i + \lim\limits_{\|T\|\to
0}\sum\limits_{i=1}^{n}Q(\xi_i,\eta_i)\varDelta y_i$$

存在，且与分割 $T$ 及 $(\xi_i,\eta_i)$ 的取法无关，称此极限为 $P(x, y), Q(x, y)$ 沿有向曲线 $L$ 上的
第二型曲线积分，记为：

$$\int_L P(x, y)\mathrm{d}x + Q(x, y)\mathrm{d}y$$

或

$$\int_{AB} P(x, y)\mathrm{d}x + Q(x, y)\mathrm{d}y$$

或

$$\int_L P(x, y)\mathrm{d}x + \int_L Q(x, y)\mathrm{d}y$$

简记为

$$\int_L P\mathrm{d}x+Q\mathrm{d}y$$

如果 $L$ 是封闭的有向曲线，则记为

$$\oint_L P\mathrm{d}x+Q\mathrm{d}y$$

设 $\vec{F}=P\vec{i}+Q\vec{j}, \mathrm{d}\vec{s}=\mathrm{d}x\vec{i}+\mathrm{d}y\vec{j}$

则又可记为

$$\int_L \vec{F}\cdot\mathrm{d}\vec{s}$$

存在条件

$P, Q$ 在有向光滑曲线弧 $L$ 上连续时，第二类曲线积分存在。

推广

$$\int_\Gamma P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z$$

性质

线性性

$$\int_L \left(\sum c_iP_i\right)\mathrm{d}x+\left(\sum c_iQ_i\right)\mathrm{d}y = \sum c_i
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\left(\int_L P_i\mathrm{d}x+\int_L Q_i\mathrm{d}y\right)$$

曲线段可加性

$$\int_L P\mathrm{d}x+Q\mathrm{d}y = \sum \int_{L_i} P\mathrm{d}x+Q\mathrm{d}y$$

有向性

$$\int_{-L}P\mathrm{d}x+Q\mathrm{d}y=-\int_L P\mathrm{d}x+Q\mathrm{d}y$$

计算

设光滑曲线 $L: \begin{cases}x=\varphi(t),\\y=\psi(t),\end{cases}\;t\in[\alpha, \beta]$，参数 $t$ 单调
地由 $\alpha$ 变到 $\beta$ 时，点 $M(x, y)$ 从 $A$ 变到 $B$，$\varphi, \psi$ 在 $[\alpha, \beta]$ 上有
一阶连续导数，$f(x, y)$ 在 $L$ 上有定义且连续，则第二型曲线积分 $\int_L
P\mathrm{d}x+Q\mathrm{d}y$ 存在，且

$$ \int_l P\mathrm{d}x+Q\mathrm{d}y =\int_{\alpha}^{\beta} \left(P(\varphi(t),
\psi(t))\varphi'(t)+Q(\varphi(t), \psi(t))\psi'(t)\right)\mathrm{d}t $$

联系

$$ \int_{L} P\mathrm{d}x+Q\mathrm{d}y = \int_{L} (P\cos\alpha + Q\cos\beta)\mathrm{d}s $$

注意

被积函数相同，起终点相同，但是路径不同积分结果不一定相同。

17.3 格林公式

17.3.1 平面区域的分类与边界的定向

若 $D$ 内任一闭曲线所围成的部分都属于 $D$，则称 $D$ 为平面单连通区域；否则称为复连通区域。
（亏格？）

$D$ 的边界曲线的正方向：人沿边界行走时，区域 $D$ 总在他的左手边。

（逆时针？）

17.3.2 Green 公式
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定理

设闭区域 $D$ 由分段光滑的曲线 $L$ 围成，函数 $P(x, y), Q(x, y)$ 在 $D$ 上具有一阶连续偏导，则有

$$ \iint\limits_{D}\left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial
y}\right)\mathrm{d}x\mathrm{d}y = \oint_{L} P\mathrm{d}x + Q\mathrm{d}y $$

其中 $L$ 是 $D$ 的取正方向的边界曲线。

证明：分块

即证：

$$ \iint\limits_{D}\frac{\partial Q}{\partial x}\mathrm{d}x\mathrm{d}y = \oint_L
Q\mathrm{d}y\text{（Y 型区域上）}$$ $$-\iint\limits_{D}\frac{\partial P}{\partial
y}\mathrm{d}x\mathrm{d}y = \oint_L P\mathrm{d}x\text{（X 型区域上）} $$

意义

建立了二重积分和曲线积分的一种等式关系

揭示了函数在区域内部与边界间的内在联系

另一种记法：

$$ \iint\limits_{D}\left|\begin{matrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y}\\ P & Q
\end{matrix}\right|\mathrm{d}x\mathrm{d}y= \oint\limits_{L}P\mathrm{d}x+Q\mathrm{d}y $$

17.3.3 应用

若 $L$ 是非封闭曲线，则先补再用。

若 $L$ 所围闭域为 $D$，有奇点则挖掉再用。

17.3.4 曲线积分与路径无关的条件

定义

$D$ 是一个区域，$P, Q$ 在 $D$ 内有一节连续偏导，如果对 $D$ 内任意给定的两点 $A, B$，以及 $D$ 内
从 $A$ 到 $B$ 的任意两条曲线 $L_1, L_2$，都有
$\int_{L_1}P\mathrm{d}x+Q\mathrm{d}y=\int_{L_2}P\mathrm{d}x+Q\mathrm{d}y$，则称曲线积分
$\int_L P\mathrm{d}x+Q\mathrm{d}y$ 在 $D$ 内与路径无关。

条件

$D$ 是单连通闭区域，若 $P(x, y)$ 和 $Q(x, y)$ 在 $D$ 内有一阶连续偏导，则下列四个条件等价：
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沿 $D$ 内任一按段光滑封闭曲线 $L$，有 $\oint_L P\mathrm{d}x+Q\mathrm{d}y = 0$1.
在 $D$ 内 $\int_L P\mathrm{d}x+Q\mathrm{d}y$ 与路径无关。2.
在 $D$ 内存在 $u(x, y)$，使得 $\mathrm{d}u=P\mathrm{d}x+Q\mathrm{d}y$。3.
在 $D$ 内，$\frac{\partial P}{\partial y}\equiv \frac{\partial Q}{\partial x}$。4.

全微分方程

若存在 $u(x, y)$，使得 $\mathrm{d}u=P\mathrm{d}x+Q\mathrm{d}y$，则称
$P\mathrm{d}x+Q\mathrm{d}y=0$ 为全微分方程。

当 $P(x, y)$ 和 $Q(x, y)$ 在单连通区域 $D$ 内有一阶连续偏导时，

全微分方程合法 $\iff \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$

18 曲面积分

18.1 第一型曲面积分

表示

显式 $z=z(x,y), (x, y)\in D$1.
隐式 $F(x, y, z)=0, (x, y, z)\in V$ （通常假设 $F, F_x, F_y, F_z$ 在 $V$ 上连续）2.
参数 $\mathit{\Sigma}: \vec{r}=\vec{r}(u, v), (u, v)\in \varDelta$，$\vec{r}(u, v)\in3.
\mathbb{R}^3$。或：

$$ \begin{cases} x=x(u, v),\\ y=y(u, v),\\ z=z(u, v),\\ \end{cases} \quad (u, v)\in \varDelta. $$

面积

$$ z=f(x, y), \, S = \iint\limits_{D}\sqrt{1+f^2_x+f^2_y}\mathrm{d}x\mathrm{d}y $$

参数方程：

$$ \begin{cases} x=x(u, v),\\ y=y(u, v),\\ z=z(u, v),\\ \end{cases} \quad (u, v)\in D. $$

$x, y, z$ 在有界区域 $D$ 上有连续一阶偏导，且 $\frac{\partial(x, y)}{\partial(u,v)}, \frac{\partial(y,
z)}{\partial(u,v)}, \frac{\partial(z, x)}{\partial(u,v)}$ 中至少一个不为零，则曲面 $S$ 的面积为

$$ \Delta S=\iint\limits_{D}\sqrt{EG-F^2}\mathrm{d}u\mathrm{d}v, \,$$
$$E=x_u^2+y_u^2+z_u^2, F=x_ux_v+y_uy_v+z_uz_v, G=x_v^2+y_v^2+z_v^2. $$

$\sqrt{EG-F^2}$ 称曲面的第一基本量
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定义

$$ \iint\limits_{\Sigma}f(x, y, z)\mathrm{d}S=\lim\limits_{\|T\|\to 0}\sum\limits_{i=1}^{n}
f(\xi_i,\eta_i, \zeta_i)\varDelta S_i $$

计算

$\Sigma$ 是正则曲面，参数方程为 $\vec{r}=\vec{v}(u, v), (u,v)\in \varDelta$，

函数 $f(x, y, z)$ 在 $\Sigma$ 上连续，则有

$$ \iint\limits_{\Sigma}f(x, y,
z)\mathrm{d}S=\iint\limits_{\varDelta}f\circ\vec{r}\left\|\vec{r}_u\times
\vec{r}_v\right\|\mathrm{d}u\mathrm{d}v $$

$z=g(x, y), f$ 在 $\Sigma$ 上连续，

$$ \iint\limits_{\Sigma}f(x, y, z)\mathrm{d}S=\iint\limits_{\varDelta}f(x, y,
z)\sqrt{1+g_x^2+g_y^2}\mathrm{d}u\mathrm{d}v $$

18.2 第二型曲面积分

曲面法向量的指向决定曲面的侧。

单位时间流量元 $\varDelta\varPhi=\vec{v}\cdot\vec{n}\varDelta A$

速度 $\vec{v}$

法向量 $\vec{n}$

定义

$$ \iint\limits_S P\mathrm{d}y\mathrm{d}z+\iint\limits_S Q\mathrm{d}z\mathrm{d}x+\iint\limits_S
R\mathrm{d}x\mathrm{d}y=$$ $$\lim\limits_{\|T\|\to
0}\sum\limits_{i=1}^{n}P(\xi_i,\eta_i,\zeta_i)\varDelta S_{i_{yz}}+\lim\limits_{\|T\|\to
0}\sum\limits_{i=1}^{n}Q(\xi_i,\eta_i,\zeta_i)\varDelta S_{i_{zx}}+\lim\limits_{\|T\|\to
0}\sum\limits_{i=1}^{n}R(\xi_i,\eta_i,\zeta_i)\varDelta S_{i_{xy}} $$

计算

$S\colon x=x(y, z),$

$$\iint\limits_S P(x, y, z)\mathrm{d}y\mathrm{d}z=\pm\iint\limits_{D_{yz}}P[x(y, z), y,
z]\mathrm{d}y\mathrm{d}z$$
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两类积分联系

$z=z(x, y), (x, y)\in D$
$\cos\alpha = \frac{\mp z_x}{\sqrt{1+z_x^2+z_y^2}},$
$\cos\beta = \frac{\mp z_y}{\sqrt{1+z_x^2+z_y^2}},$
$\cos\gamma = \frac{\pm 1}{\sqrt{1+z_x^2+z_y^2}}.$

$$
\iint\limits_{S}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}
y =\iint\limits_{S}(P\cos\alpha+Q\cos\beta+R\cos\gamma)\mathrm{d}S $$

参数方程处理

$\vec{r}=\vec{r}(u, v), (u, v)\in \Delta$

$\vec{F}=(P, Q, R)$，在 $S$ 上连续

$$
\iint\limits_{S}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}
y =\pm
\iint\limits_{\varDelta}\vec{F}\circ\vec{r}\cdot(\vec{r}_u\times\vec{r}_v)\mathrm{d}u\mathrm{d}v
$$

18.3 Gauss 公式与 Stokes 公式

Gauss 公式

空间闭区域 $V$ 由分片光滑的双侧封闭曲面 $S$ 围成，函数 $P, Q, R$ 在 $V$ 上连续，且具有一阶连续
偏导，则

$$ \iiint\limits_{V}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial
R}{\partial
z}\right)\mathrm{d}x\mathrm{d}y\mathrm{d}z=\oiint\limits_{S}P\mathrm{d}y\mathrm{d}z+Q\ma
thrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y $$

其中 $S$ 取外侧。此式称高斯公式。

双侧曲面的侧与其边界曲线方向

边界曲线方向与法向量方向根据右手螺旋定则判断。

斯托克斯公式

$S$ 是光滑的双侧曲面，边界曲线 $\Gamma$ 是按段光滑的连续曲线，若函数 $P, Q, R$ 在 $S$ （连同
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$\Gamma$）上连续，且有连续的一阶偏导数，则：

$$ \iint\limits_{S} \left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial
z}\right)\mathrm{d}y\mathrm{d}z +\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial
x}\right)\mathrm{d}z\mathrm{d}x +\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial
y}\right)\mathrm{d}x\mathrm{d}y$$ $$=\oint\limits_{\Gamma}
P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z $$

行列式形式

$$ \iint\limits_S \left|\begin{matrix} \mathrm{d}y\mathrm{d}z & \mathrm{d}z\mathrm{d}x &
\mathrm{d}x\mathrm{d}y \\\;\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} &
\frac{\partial}{\partial z} \\\,\\ P & Q & R \end{matrix}\right| =\oint\limits_{\Gamma}
P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z $$

18.4 场论

概念

数量场：
$f(x, y, z)$

向量场：
$\vec{F}(x, y, z)=(P(x, y, z), Q(x, y, z), R(x, y, z))$

梯度场

$V\subset\mathbb{R}^3$ 为一开集，函数 $f$ 连续可微。

$$\mathrm{grad}\,f(\vec{p}_0) = \frac{\partial f(\vec{p}_0)}{\partial x}\vec{i}+\frac{\partial
f(\vec{p}_0)}{\partial y}\vec{j}+\frac{\partial f(\vec{p}_0)}{\partial z}\vec{k}$$

沿此方向，方向导数取最大值。

Nabla 算子

$$ \nabla = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}) $$

$\nabla (cf)=c\nabla f$1.
$\nabla(f\pm g)=\nabla f\pm \nabla g$2.
$\nabla(fg)=f\nabla g+g\nabla f$3.
$\nabla(\varphi\circ f)=(\varphi' \circ f)\nabla f$4.

散度场
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$\vec{F}(x, y, z)=(P(x, y, z), Q(x, y, z), R(x, y, z))$ 为空间区域 $V$ 上的向量值函数，定义数量函数

$$D(x, y, z)=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}$$

称为向量函数 $\vec{F}$ 在 $(x, y, z)$ 处的散度，记为 $\mathrm{div}\;\vec{F}$。

高斯公式可写为：

$$ \iiint\limits_{V}\mathrm{div}\;\vec{F}\mathrm{d}x\mathrm{d}y\mathrm{d}z=\oiint\limits_S
\vec{F}\cdot\mathrm{d}\vec{S} $$

上式两边取某一点 $M_0$ 处的极限，可知 $\mathrm{div}\;\vec{F}(M_0)$ 是流量对体积 $V$ 的变化率。

$\mathrm{div}\;\vec{F}(M_0)>0$，流出，称为源

$\mathrm{div}\;\vec{F}(M_0)<0$，流入，称为汇

若 $\forall P\in V, \mathrm{div}\;\vec{F}(P)=0$，称 $\vec{F}$ 是无源场。

散度可记为 $\mathrm{div}\; \vec{F}=\nabla\cdot\vec{F}$

性质：

线性性1.
$\nabla \cdot\varphi \vec{F}=\varphi \nabla \cdot \vec{F}+\vec{F}\cdot\nabla\varphi$2.
$\varphi$ 是数量场，则 $\nabla\cdot\nabla\varphi=\frac{\partial^2\varphi}{\partial3.
x^2}+\frac{\partial^2\varphi}{\partial y^2}+\frac{\partial^2\varphi}{\partial z^2}$

记 $\nabla\cdot\nabla=\varDelta$，称 Laplace 算子。

若数量场 $f$ 满足 Laplace 方程（Laplacian?）

$$ \varDelta f=\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}+\frac{\partial^2
f}{\partial z^2} = 0 $$

则称 $f$ 是 $V$ 上的调和函数。

旋度场

$\vec{F}(x, y, z)=(P(x, y, z), Q(x, y, z), R(x, y, z))$ 为空间区域 $V$ 上的向量值函数，定义向量函数：

$$ \mathrm{rot} \vec{F} = (\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial
P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})
$$

称其为向量场 $\vec{F}$ 在 $(x, y, z)$ 处的旋度。其形成的场为旋度场。

或记：

$$ \mathrm{rot}=\left|\begin{matrix} \vec{i} & \vec{j} & \vec{k} \\\,\\ \frac{\partial}{\partial x} &
\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\\,\\ P & Q & R \end{matrix}\right| $$
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或记：

$$ \mathrm{rot}\, \vec{F} = \nabla \times \vec{F} $$

斯托克斯公式可记为：

$$ \iint\limits_S \mathrm{rot}\,\vec{F}\cdot\mathrm{d}\vec{S} = \oint\limits_\Gamma
\vec{F}\cdot\mathrm{d}\vec{s} $$

势

存在 $\varphi$ 使得 $\mathrm{grad}\,\varphi=\vec{F}$，则称向量场 $\vec{F}$ 是有势场。

对含于 $V$ 的任一封闭曲线 $\Gamma$，$\oint\limits_{\Gamma}\vec{F}\cdot\mathrm{d}\vec{s} = 0$，
则称 $\vec{F}$ 是 $V$ 上的一个保守场。

如果 $\mathrm{rot}\,\vec{F}\equiv \vec{0}$，则称 $\vec{F}$ 是 $V$ 上的一个无旋场。

上述三个条件等价。

空间曲线积分与路径无关性

空间区域

若 $V$ 内任一封闭曲线皆可以不经过 $V$ 外的点而连续收缩为 $V$ 内的一点，则称 $V$ 为单连通区域。
（亏格为 0？同胚于球？）否则称为复连通区域。

路径无关性

$\Omega\subset\mathbb{R}^3$ 是单连通区域，$P, Q, R$ 在 $\Omega$ 上连续，且有一阶连续偏导，则
下列四个条件等价：

对任一按段光滑封闭曲线 $L$，$\oint\limits_{L}P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z1.
= 0$
$\Omega$ 内 $\int\limits_{L}P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z$ 与路径无关2.
$\exists u(x, y, z),3.
\mathrm{s.t.}\;(\mathrm{d}u=P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z)$
$\frac{\partial P}{\partial y}\equiv\frac{\partial Q}{\partial x},\; \frac{\partial Q}{\partial4.
z}\equiv\frac{\partial R}{\partial y},\;\frac{\partial R}{\partial x}\equiv \frac{\partial
P}{\partial z}$
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