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Jooodooag

110000

11.1000dogon

11200000000

guoooobbboooodod
guooooon

$x\gegslant 1, f(x)\gegslant 0, f(x)$ O O $\Rightarrow \sum\limits_{n=1}"~{\infty }f(x)$ O
$\int {1}~ {+\infty}(x)\mathrm{d}x$ O OO

guoooobboooooobooobod

o $(\exists \ 0<qg<1, N \in \mathbb{N}"{\ast},s.t. \ n>N \Rightarrow \sgrt[n]{a n}\leq < 1)
\Rightarrow \sum\limits_{n=1}"~{\infty} a n$ O O

o $(\forall N \in \mathbb{N} ~{\ast}, \exists n > N, s.t. \\sqrt[n]{a_n}\ge 1) \Rightarrow
\sum\limits_{n=1}"{\infty} a n$ OO

o $a _n\ge 0, (\lim\limits_{n\to \infty }\sgrt[nl{a_n}=q)\vee (\lim\limits_{n\to
\infty N\sup\sqrt[nl{a_n}=q)$00

o $q < 1 \Rightarrow$ O

o $g > 1 \Rightarrow$ 0

gooooobbooon

e 3an>0bn>0,\exists n 0, (n\ge n_0\Rightarrow \frac{a_{n+1}}{a n}\le
\frac{b_{n+1}}{b n})$00 $\sum b$ O $\Rightarrow \sum a$ O O $\sum a$ O $\Rightarrow
\sum b$ O

e $a n>0%

1. $(\exists\ 0<g<1,n_0\in \mathbb{N} "~ {\ast}, \mathrm{s.t.}\ n\ge n_0 \Rightarrow
\frac{a_{n+1}}{a_n}\le g < 1) \Rightarrow \sum a$ 00 O
2. $(\exists\ n_0\in \mathbb{N}~{\ast}, \mathrm{s.t.}\ n\ge n_0 \Rightarrow
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\frac{a_{n+1}}{a n}\ge 1) \Rightarrow \sum a$ O O
e $\lim\limits_{n\to \infty} \frac{a_{n+1}}{a n} = q$
1. $g<1\Rightarrow \sum a$ O
2. $g > 1 \Rightarrow \sum a$ O
e S\lim\limits_{n\to \infty} \sup \frac{a_{n+1}}{a n} = q < 1 \Rightarrow \sum a$ O
e S\lim\limits_{n\to \infty} \inf \frac{a_{n+1}}{a n} = q > 1 \Rightarrow \sum a$ O

goooobbibn

1. $a n>0%
o $\exists\r > 1, N_O\in \mathbb{N}~{\ast}$, 0 $n >N 0$ 0O O
$n(\frac{a_n}{a_{n+1}}-1)\ger > 1%, O $\sum a$ O
o $\exists\ N_O\in \mathbb{N}~{\ast}$, 0 $n >N _0$ OO 0O $n(\frac{a_n}{a_{n+1}}-1)\le
14, 0 $\suma$ O
2. $a_n> 0, \frac{a_n}{a_{n+1}}=1+\frac{I}{n}+o(\frac{1}{n}) \quad (n\to \infty)$ O
$\lim\limits_{n\to \infty} n(\frac{a_n}{a_{n+1}}-1) = I1$00
o $I>1 \Rightarrow \sum a$ O
o $l<1 \Rightarrow \sum a$ O

13000gooon

gooooboo

0000 $\sum\limits {n=1}"~{\infty} (-1)~{n-1}a n\a n>0$00 $\{fa M\}$ DO OO $0$C 00O 0O
OO

gooooo

$\{a_n\}, \{b_n\}$ O O O O O$\forall n\in \mathbb{N}~{\star}, S_k=\sum\limits_{i=1}"~{k}a_i,S_0 =
giutﬁn\limits_{k:l}"{n}a_kb_k=\sum\|imits_{k=1}"{n-1}S_k(b_k-b_{k+1})+S_nb_n$
goboooboboooboobooaonon

$\int S\mathrm{d}T = ST - \int \mathrm{d}S$

0 $a n$ 00O $\mathrm{d}S$Osb n$ O O $T$O$\sum ab = \int T\mathrm{d}S=ST-\int S\mathrm{d}
T = b\sum a + \sum (\sum a)(b_k-b_{k+1})$

goooo

$\{b_n\}$ O O O$\left\sum a\right|\le M$0O $|\sum\limits_{k=1}~{n}a_kb_kJ\le M(|b_1|+2|b_n|)$.
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guooooon

$\M{b N\}$ 00000 $0$0%\sum a$ O O $\Rightarrow \sum\limits_{k=1}"~{\infty} a kb k$ O O.

goooon

$\{b_n\}$ OO0 O O0O%$\sum a$ 00O $\Rightarrow \sum\limits_{k=1}"{\infty} a_kb k$ O O.

114000000000

gooo

$\mathbf{Th.\; 11.4.1}$

oo ooououooo
gobogoboooooobooooboog

$\mathbf{Th.\; 11.4.2}$
gogpooogooogoboogoooooooboooooboooooogoooDoo
$\mathbf{Th.\; 11.4.3}\;\\text{Riemann O O 0O O }$

oo oooooon

gooo

$\mathbf{Def.}\;\;\text{Cauchy O O }$

$\sum\limits_{n=1}"~{\infty}c_n = \sum\limits_{n=1}"~{\infty}
(x_1y n+x_2y_{n-1}+\cdots+x_ny 1)$

0000 $\sum x$ O $\sum y$ O Cauchy OO 0O
$\mathbf{Th.\; 11.4.3}\;\;,\text{Cauchy O O }$

gobogobooobbooobooobobooobooon

200y

121000

CVBB ACM Team - https://wiki.cvbbacm.com/



Last
update:
2020/05/08
11:45

goog

2020-2021:teams:mian:pantw:real_analysis https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:mian:pantw:real_analysis&rev=1588909521

$\forall x_0\in 1$00 $\{f n(x O\}$ DO O $f(x 0)$00 0 $\{f n(x\}$ O $I$ 00000,

gooo

$\forall\ \varepsilon > 0, \exists N(\varepsilon) > 0$00 $n>N(\varepsilon)$ O O $\forall x\in I$0C
$|f_n(x)-f(x)|<\varepsilons DO O ODOOO0O ${fn(x\}$0$1$000000 $f(x)$00 O
$f n(x)\stackrel{uni}{\longrightarrow} f(x)$.

1220000000

gooo

$\lim\limits_{n\to \infty } \sup\limits_{x\in 1} |f_n(x)-f(x)| = 0 \iff f_n(x)\stackrel{uni}{\longrightarrow}
f(x)\quad (n \in \mathbb{N} ~ {\star})$

goooon

$\forall x_0\in I, \forall \varepsilon > 0, \exists N(x_0, \varepsilon) \in \mathbb{N} ~ {\star}, \forall n >
N, \forall p \in \mathbb{N} ~{\star}: |f n(x_0) - f {n+p}(x_0)| < \varepsilon \iff \{f_ n(x)\}$ O $I1$ O O
ooad.

$\forall \varepsilon > 0, \exists N( \varepsilon) \in \mathbb{N} "~ {\star}, \forall n > N, \forall p \in
\mathbb{N}~{\star} \forall x \in I: |f_n(x) - f_{n+p}(x)| < \varepsilon \iff \{f n(x)\}$ O $I$ 00O 0OO.

O00O00O0O[Weierstrass[O O O[MOOODOOOOOO0O

0000000000 $\suma_n$gd O $\forall x\in 1$00 O $Ju_n(x)|\le a_n$00 $\sum u_n(x)$ O $I$
googd.

goooooo

$$\sum\limits_{n=1}"{\infty}a_n(x)b_n(x)$$

o0 $1s00

$\{b n(x)\}$0000 $x$00000000 $08.
$\sum\limits {n=1}"{N}a n(x)$ 0 $I$ 000 0O0O.

0 $\sum\limits_{n=1}"{\infty}a n(x)b n(x)$ O $I$ O OOOO.
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goooon

$$\sum\limits_{n=1}"{\infty}a_n(x)b_n(x)$$

00 $i1$00

$\M{b_n(xX)\}$ 0000 $x$ 0000 $I$ 00000,
$\sum\limits_{n=1}"~{\infty}a n(x)$ O $I$ DO OO 0O.

O $\sum\limits_{n=1}"{\infty}a n(x)b n(x)$ O $I$ 00O O O.

1230000/00000

god

$f n(x)$ O $I$ O O O J%$f_n(x)\stackrel{uni}{\longrightarrow}f(x)$0C $f(x)$ O $I1$ 0O O.

$\sum\I|m|ts {n=1}"{\infty}u n(x)$ O $I$ 000000 $S(x)$00 $u_n(x)\in C_{I} \Rightarrow
_n(x)\in C_{1}$

Dini O O

$\{f_n(x)\Nin Cl[a,bl$J0 000 OO $x\in [a, b]$OS\lim\limits_{n\to \infty}f n(x)=0$0%$f n(x)$ O O O
O $\{f n(x\}$ 00000 $0$00

$\{f_n(x)\Nin C[a,b]$00 0 0 0 $f(x)$00 00 OO0 $x\in [a, bI$Os$F n(x)$ DO OO $\{f n(x)\}$ O
$la, b]$ DO OO OO $f(x)$0

$\sum\limits_{n=1}"~{\infty}u_n(x), u_n(x)\in C[a,b], u_n(x)\ge 0.$ O $S(x) \in C[a,b]$0
$\sum\limits_{n=1}"~{\infty}u_n(x) $ $la,bl$000O0OODO

00

$\{f_n\}in R[a,b]$0%$f_n(x)\stackrel{uni}{\longrightarrow} f(x)$J0 $f\in R[a, b]$ O $\lim\limits_{n\to
\infty \\int_{a} "~ {b}f n(x)\mathrm{d}x=\int_{a} "~ {b}f(x)\mathrm{d}x$

O0oooOoooooo

$\sum\limits_{n=1}"~{\infty}u_n(x \stackrel{unl}{\Iongrlghtarrow}S _n(x)\in R[a,b1$00 $S(x)\in
R[a,b], \int_{a}~{b}(\sum\limits_{n=1}"{\infty}u_n(x \mathrm{d}x—
\sum\limits_{n=1}"{\infty N\int_{a} "~ {b}u_n(x)\mathrm{d}x$

gd

$f n™{'}in C[a,b], f n™{'}\stackrel{uni}{\longrightarrow}g(x), \exists x_0\in[a, b], \{f n(x 0)\}$ oo
$\Rightarrow \{f n(x)\}$ O $[a,b]$ 00 DO OO O $f(x)$00 O $\forall x \in [a,b], f~{"'}(x xX)$[]0
$\lim f n]~{'} =\lim [f n~{'}]$
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124000

$\sum\limits_{n=0}"{\infty}a n(x-x_0)"n$

$\sum\limits_{n=0}"~{\infty}a_nx"n$

goad

Abel O O
$\sum\limits_{n=0}"{\infty}a nx~n$
00 $x 0\neq0$ 00000000 $|x|<[x0]$00000

00 $x 1\neq0$ 00000000 $|x|>x 1$ 000

goon

$R\in [0, +\infty)$

goodgdgo

$R = \frac{1}{\lim\limits_{n\to \infty \sqrt[n]{|a_n|}} = \lim\limits_{n\to
\infty}|\frac{a_n}{a_{n+1}}|$

goog

$\sum a_nx"n: R_a,\; \sum b_nx"~n: R_b,\; R=\min\{R_a, R_b\}.$ 0 O
$\sum(a_n\pm b_n)x™n =\sum a_nx~n\pm\sum b nx*n$ 0 $(-R,R)$ 00 00O

$\suma nx™n,\sumb nx*n$ DO OO0 $(-R,R)$TDDOOODOO

guooooon

$\forall [L, K] \subset (-R, R)$[0$\sum a nx~n$ O $[L, KI$ OO OO OO
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goog

Abel DO OO

$\lim\limits_{x\to R~ {-}} \sum\limits_{n=0}"{\infty} a_nx”~n = \sum\limits_{n=0}"~{\infty}
anR*n$ 0000

$\lim\limits_{x\to (-R)”~{+}} \sum\limits_{n=0}"{\infty} a_nx"~n = \sum\limits_{n=0}~{\infty} a_n(-
R)*n$ 0000

EEERERN

$S(x)=\sum a_nx"n: R, \quad S(x)\in C(-R, R)$[$S(x)$ O $(-R,R)$ 0000 DODODOOO

$S™{ (k) }(x)=\sum\limits_{n=k} ™~ {\infty} n(n-1)\cdots(n-k+1)a_nx"{n-
k}=\sum\limits_{n=k} ™~ {\infty} n~{\underline{k}}a_nx~{n-k}$

gdodouooooogg

googgd

$S(XN\inR(-r,N$Q0 000 O0ODOO0O $\forall x\in (-R,R)$ O

$\int_{0} ™ {x}S(t)\mathrm{d}t=\sum\limits_{n=0}"~{\infty \int_ {0} ~{x}a_nt~n\mathrm{d}t=\sum\
limits_{n=0}"~{\infty}\frac{a_n}{n+1}x~{n+1}$

gogoooogao

gd

$f(x)=\sum\limits_{n=0} " {\infty }\frac{f~ {(n)}(x_0)}{n!'}(x-x_0)"n, \quad x\in (x_0-R,x 0+R)$
$fs 00000000 $FNff \lim\limits_{n\to \infty}R_n(x)=0, \forall x\in U(x_0, R)$

$fs 00000000 $f\Leftarrow [f~{(n)}(x)|\le M, \forall n\in \mathbb{N} " {\star}, \forall x\in
U(x_0, R)$00 $\{f~{(n)}(x)\}$ O $(x 0-Rx 0+R)$ OO OO

0

gobsoboooobobood

$f(x)=\frac{1}{1-
x-2x"2}=\frac{1}{3}(\frac{1} {1+x}+\frac{2} {1-2x})=\frac{1} {3} \sum\limits_{n=0}~{\infty}(-1)
~“nx™n + \frac{2} {3} \sum\limits_{n=0}~{\infty}2~nx"n$
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ud

gooogooo

gooogooog .

gobogond

13 Fourier (1 [J

$y=A_0 + \sum\limits_{n=1}"{\infty}A_n\sin(n\omega t+\varphi_n)$

13.000000 Fourier ([

‘g0 ooggogagr

gooo

$y=\frac{a_0}{2} + \sum\limits_{n=1}"{\infty}(a_n\cos nx+b_n\sin nx)$
goooooooon

goodd

$1, \cos x, \sin x, \cos 2x, \sin 2x, \ldots$

g

00000000000 $[-\pi,\pil$ 00000 $08.
oo0oooooooa
$\int_{-\pi} "~ {\pi} \sin mx \sin nx \mathrm{d}x = \pi \delta_{mn}=\begin{cases}0, m\neq n\\\pi,

m=n\end{cases}$

gooog
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s\int_{-\pi} "~ {\pi}f(x)\mathrm{d}x = \int_{-\pi} ~{\pi}\frac{a_0}{2}\mathrm{d}x + \int_{-\pi} ~{\pi}
[\sum\limits_{k=1}"{\infty}(a_k\cos kx+b_k\sin kx)\mathrm{d}x=a O\pi\iffa 0 =
\frac{1}{\piR\int_{-\pi}~{\pi} f(x)\mathrm{d}x$

$\int_{-\pi} "~ {\pi}f(x)\cos nx\mathrm{d}x = \frac{a_0}{2}\int_{-\pi} ~ {\pi}\cos nx\mathrm{d}x +
\sum\limits_{k=1}"{\infty}(a_k\int_{-\pi} "~ {\pi}\cos kx\cos nx\mathrm{d}x+b_k\int_{-\pi} ~{\pi}\sin
kx\cos nx\mathrm{d}x)=a_n\int_{-\pi} ~{\pi} \cos”™2 nx \mathrm{d}x = a_n\pi\iffa_ n =
\frac{1}{\pi}\int_{-\pi} ~ {\pi}f(x)\cos nx\mathrm{d}x$

00 $b n=\frac{1}{\pi}\int_{-\pi}~{\pi}f(x)\sin nx\mathrm{d}x$

goodd

0 $f$00 $2pis 0000000000000 000O $f\sim\frac{a 0}{2} +
\sum\limits_{n=1}"~{\infty}(a_n\cos nx+b_n\sin nx)$.

goon

$f 000 $fa,bls 00000 $[a,bl$ 00000000 $OO00O0ODODOOOOOOOOODODODODO
O0 $f$0 $fa, bls 00000000

Fourier 0 0 00
O $f$0$2pis 00000 $[-\pi\pil$ 00000000 $f$ 0 Fourierd OO $\forallx 0$ 0 OO0

$\frac{f(x 0+0)+f(x_0-0)}{2}$.

O 00%$f$ O $[-\pi, \pi]l$ OO OO0 $\Rightarrow f$ 0 0O O Fourier 0 0O O

guoooobobod

OO0 [-\pi, \pilODO

$\mathbf{Th.}$
0100000 $2pis 0000 $f(x)$s 00 000000O0CO0O00O0O0OO

$$\begin{cases} a n =0, &n =0, 1, 2, \ldots)\\ b_n = \frac{2} {\pi}\int_{0}~ {\pi}f(x)\sin nx
\mathrm{d}x, &(n = 1, 2, \ldots) \end{cases}$$

0200000 $2pis 0000 $f(x)s 00 000000O0O0O0O0O0OO

$$\begin{cases} a_n = \frac{2}{\piHint_{0} "~ {\pi}f(x)\cos nx \mathrm{d}x, &(n =0, 1, 2, \Idots)\\
b n=0,&n=1,2,\ldots) \end{cases}$$

$\mathbf{Def.}$

CVBB ACM Team - https://wiki.cvbbacm.com/



Last
update:
2020/05/08
11:45

2020-2021:teams:mian:pantw:real_analysis https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:mian:pantw:real_analysis&rev=1588909521

O04¢f(x)$00000000000000O0O0O0OO
O0$f(x)$0000000000000DO0O0O0O0O

000 [0, \pil OO

ooooo
00 00$9(x)=-f(-x)$
000 D0$9(x)=f(-x)$

0002000000

0000 $\frac{\pi x}{L} =t$
$F(t) = f(\frac{Lt}{\pi})$

$f(x) = \frac{a_0}{2}+\sum\limits_{n=1}"{\infty}(a_n\cos\frac{n\pi x} {L}+b_n\sin\frac{n\pi
x}{L})$

13.2 Fourier O OO OO0 QOO

Dirichlet 0 O

$f00 2pis 0000000 0O0OO0O0OO
0 $S n(x 0)=\frac{a 0} {2}+\sum\limits_{k=1}"~{n}(a_k\cos kx 0+b _k\sin kx 0)$

$$S n(x_0) = \frac{1}{2\pi}\int_{-\pi} ™~ {\pi}f(x)\mathrm{d}x +
\sum\limits_{k=1}"{n}\frac{1}{\piH\int_{-\pi} ~{\pi}f(x)(\cos kx\cos kx_0+\sin kx\sin
kx_0)\mathrm{d}x$$ $$=\frac{1}{\pi}\int_{-\pi} ~{\pi}f(x)(\frac{1} {2} +\sum\limits {k=1}"{n}\cos
k(x-x_0))\mathrm{d}x$$
$$=\frac{1}{\pi\int_{-\pi} ~{\pi}f(x)(\frac{\sin(n+\frac{1}{2})(x-x_0)}{2\sin\frac{x-
x_0}{2}})\mathrm{d}x$$
$$=\frac{1}{\piNint_{-
\pi} ™~ {\pi}H(t+x_0)(\frac{\sin(n+\frac{1}{2})t}{2\sin\frac{t} {2} })\mathrm{d}x$$
$$ \frac{1}{\piH\int_{0}~ {\pi}(f(t+x_0)+f(x_O-

))(\frac{\sin(n+\frac{1}{2})t}{2\sin\frac{t} {2} })\mathrm{d}x $$

dddoooooououooo

Riemann-Lebesgue 1 [

$\mathbf{Th.\\13.1:}$ (R-L O O)
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0 ¢$f$0 $[a,bl$ 00000000 0O0O0O0O

$\lim\limits_{\lambda\to +\infty}\int_{a} " {b}f(x)\cos \lambda x \mathrm{d}x=0$
$\lim\limits_{\lambda\to +\infty }\int_{a} "~ {b}f(x)\sin \lambda x \mathrm{d}x=0$%
$\mathbf{Th.\\13.2:}$

O $f$ O $l-\pi, \pil$ O O OO$f'$ O $[-\pi, \pils DO ODDOODDOODO $f(-\pi)=Ff(\pi)$O0 O O
$a_n=o(\frac{1}{n}), b_n=o(\frac{1}{n}), n\to \infty$

$\mathbf{Th.\\ 13.3:}$

O $f$ O $[-\pi, \pil$ OO0 $k+1$ 0000~ {(n+1)}$ O $[-\pi, \pil$ 00000 D00O0ODO0O $f(-
\pi)=Ff(\pi), f'(-\pi)=F"(\pi),\Idots, f~{(k)}(-\pi)=F~{(k)}(\pi)$00 O O

$a_n=o(\frac{1}{n"{k+1}}), b_n=o(\frac{1}{n"{k+1}}), n\to \infty$

gooo

O R-LOO[DirichletD 0 OO0

guoooobobboogn

$f 00 $2pis 000000000 0ODO0O0O0O0OO $f0000000O0O $x 0$0000000O0ODO
000000 $f$0$x 0800000000

Dini0 00O

$\mathbf{Th.\\ 13.5:}%
O $f$0 $2pis 000000 $[-\pi,\pil$ 0000000000 $s\in\mathbb{R}$00 O
$\varphi(t)=f(x_0+t)+f(x_0-t)-2s$,

O $\exists\ \delta>0, \mathrm{s.t.} \frac{\varphi(t)} {t}$ O $[0,\delta]$ OO O DO OO0 OODOO0O $f$
O Fourier00O 0 $x 0$ 0000 $s$0

$\mathbf{Th.\\ 13.7:}$

0 $f$ 0 $2pis 000000 $[-\pi, \pil$ 0000000000 $f$0 $x 0400000000000
00000000000000000 $x0$0000 $f(x_0)s.

$\mathbf{Def\\ 13.2:}$
0 $f$ 0 $U~{o}(x 0)$ 00000000 $\delta > 0, L>0, \alpha > 0$00 O O $t\in (0, \delta]$ O O

$[f(x_0+t)-f(x_0+0)\le Lt~ {\alpha}$,
$|f(x_0-t)-f(x_0-0)|\le Lt~ {\alpha}$,

CVBB ACM Team - https://wiki.cvbbacm.com/



Last
update:
2020/05/08
11:45

00 $f$ 0 $U~{o}(x 0)$ O OO $\alpha$ O Lipschitz O O O

2020-2021:teams:mian:pantw:real_analysis https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:mian:pantw:real_analysis&rev=1588909521

$\mathbf{Th.\\ 13.6:}%

0 $f$ 0 $2\pi$ 00D OO0 $[-\pi, \pil$ DOODODODDD $f$ 0 $U~{o}(x 0)$ 000 $\alphas
0 Lipschitz 00000 $f$ 0000000 $x 0$0000

Moo ogduood

14.1Euclid 0000000000

ndogoggno
00 $\mathbb{R}"n$0 0000000

Euclid O O
00

00000 $\mathbb{R}*"n$ OO OO OOODOO
$\langle \boldsymbol{x},\boldsymbol{y}\rangle=\sum\limits {i=1}"~{n}x_iy i$

1. 0O OO $\langle \boldsymbol{x}, \boldsymbol{x}\rangle\ge 0%

2. 000 $\langle \boldsymbol{x}, \boldsymbol{y}\rangle = \langle \boldsymbol{y},
\boldsymbol{x}\rangle$

3. OO0 $\forall \lambda,\forall \mu, (\langle \lambda\boldsymbol{x} +\mu \boldsymbol{y},
\boldsymbol{z}\rangle = \lambda\langle \boldsymbol{x}, \boldsymbol{z}\rangle+\mu\langle
\boldsymbol{y}, \boldsymbol{z}\rangle)$

Cauchy-Schwartz 0 0 O

$\langle \boldsymbol{x}, \boldsymbol{y }\rangle”2\le \langle \boldsymbol{x},
\boldsymbol{x}\rangle\langle \boldsymbol{y}, \boldsymbol{y}\rangle$

g
00

$\mathbf{Def\\ 14.1.1}$
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$\|\boldsymbol{x}\|=\sqrt{\langle \boldsymbol{x}, \boldsymbol{x}\rangle}$[J0 O O
$\boldsymbol{x}$ OO OO

1. 00O $\|\boldsymbol{x}\|\ge 0%
2. 000 $\|\lambda \boldsymbol{x}\|=[\lambdal|\|\boldsymbol{x}\|$
3. 00000 $\|\boldsymbol{x}+\boldsymbol{y}\|\le\[\boldsymbol{x}\|+\[\boldsymbol{y}\|$

0
$|\langle \boldsymbol{x}, \boldsymbol{y}\rangle|\le \|\boldsymbol{x}\|\|\boldsymbol{y}\|$

$\[\boldsymbol{x}+\boldsymbol{y}\| "~ 2\le(\|\boldsymbol{x}\|+\|\boldsymbol{y}\|) ~2$

g

$\cos\theta(\boldsymbol{x}, \boldsymbol{y})=\frac{\langle \boldsymbol{x},
\boldsymbol{y}\rangle} {\|\boldsymbol{x}\|\|\boldsymbol{y}\|}$

un

$\mathbb{R}~2$ 0O O O $\boldsymbol{x}, \boldsymbol{y}$ OO0 OO $\|\boldsymbol{x}-
\boldsymbol{y}\|$

HEN

$\mathbf{Def\\ 14.1.2}$
0 O [0$B_r(\boldsymbol{a})=\{\boldsymbol{x}\in \mathbb{R} ~n|\ \|\boldsymbol{x}-
\boldsymbol{a}\|<n}$

goog

$\mathbf{Def\\ 14.1.3}$
$\{\boldsymbol{x} k\}\subset \mathbb{R}"~n$

$\exists \boldsymbol{a}\in\mathbb{R} ~n,\forall \varepsilon>0,\exists K\in \mathbb{N} ~ {\star},\forall
k>K, \mathrm{s.t.} \|\boldsymbol{x} k-\boldsymbol{a}|<\varepsilon$(j00 O O O
$\{\boldsymbol{x} k\}$ O 0O O $\boldsymbol{a}$00 O

$\lim\limits_{k\to\infty }\boldsymbol{x} k=\boldsymbol{a}$[J0 $\boldsymbol{a}$ 00O OO OO0

DO0O0O00000 $\lim\imits_{k\to \infty}x_{i, k}=a_i$(0 O O $\{\boldsymbol{x}_k\}$ 0000 O
0 $\boldsymbol{a}$[]

$\mathbf{Th.\\ 14.1.1}$

00000 $\boldsymbol{a}\iff$ OO O0O0OOO $\boldsymbol{a}$.
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guoooon

$\mathbf{Def.\\ 14.1.4\quad \text{O O O }}$
ggoooogo
$\mathbf{Th.\\ 14.1.2\quad \text{OU O 0 O OO }}$

OooOo$Nffs0o0o0oon

goooo

$\mathbf{Def.\\ 14.1.5\quad \text{O O }}$

$E\subset\mathbb{R}~n$00 $\forall \boldsymbol{x}\in E, \exists \varepsilon>0, \mathrm{s.t.}\
B_{\varepsilon}(\boldsymbol{x})\subset E$(0 0 $E$ 0 OO DO

godooooooodouoooooon

OO0 $\mathbb{R}"n$ O $\varnothing$ DO OO ODOODOO
$\mathbf{Prop.\\ 14.1.1}$
godooooododouoooooooouooon

gobogobooobobooobobooobooooo

guooooobood

$\mathbf{Def\\ 14.1.6}$
O $E\subset \mathbb{R}"~n, \boldsymbol{x}\in\mathbb{R}"~n$,

1. $\exists B_{\varepsilon}(\boldsymbol{x})\subset E \iff \boldsymbol{x}$ O $E$ 0 O O

2. $\exists B_{\varepsilon}(\boldsymbol{x})\subset E~{c} \iff \boldsymbol{x}$ O $E$ O OO

3. $\forall B_{\varepsilon}(\boldsymbol{x}), \exists \boldsymbol{p},\boldsymbol{g}\in
B_{\varepsilon}(\boldsymbol{x}), \mathrm{s.t.}\ \boldsymbol{p}\in E, \boldsymbol{g}\notin
E\iff \boldsymbol{x}$ 0O $E$ O OO0

0000000 $es000000 $E~{\circ}$

000000000 $e$ 000000 $\partial E$O

gd

$\mathbf{Def.\ \ 14.1.7\quad \text{O O }}$

$\boldsymbol{a}$ 0O O O $\iff E\subset \mathbb{R}"n, \boldsymbol{a}\in \mathbb{R}~n, \forall
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\varepsilon > 0, \exists \boldsymbol{p}\in ((B_{\varepsilon}(\boldsymbol{a}))\cap E)$

$\boldsymbol{a}$ O O O O $\iff \Inot (\boldsymbol{a}$ O O O $)$

gooog

$\mathbf{Def.\\ 14.1.8}$
00000000000 $E'$Q
$\bar{E}=E\cupE'$ 00 $E$ OO DD
$\mathbf{Th.\\ 14.1.3}$

00 $E$ 000 $\iff E' \subset E$
$\mathbf{Th.\\ 14.1.4}$

00 $E$ 00O $\iff \forall \{\boldsymbol{a} n\}\subset E, (\lim\limits_{n\to
\infty }\boldsymbol{a} n\in E$ 0O O O O

$\mathbf{Th.\\ 14.1.5}$

OO0 $e$s00000000O00O0OO0

goooooobon

$\mathbf{Def\\ 14.1.9}%

O $E$ O $\mathbb{R}"*n$ OO O OO DODODO $\boldsymbol{p}, \boldsymbol{q} \in E$JC O $E$ OO
00000000000 $es00000O00

00O OO [O$\varphi = (\varphi_1(t), \cdots, \varphi_n(t)): [a, b]\to \mathbb{R}"n$
O0O00 $warphi i(h$ 00 O00DO0OO $wvarphis OO ODODODOOOODOODOOOOODOO
$\mathbf{Def\\ 14.1.10}$

$\mathbb{R}"n$ 000000000000 O0ODOO0OOOOOOODOOOOO

142 Euclid D OO0 0000

gooog

$\mathbf{Th.\\\ 14.2.1}\text{J0 0000 O}$

O $\{E_ K\}$ O $\mathbb{R}"*n$ D0 D OT00OO0ODODOODO $E 1\supset E 2\supset \cdots \supset
E k\supset E_{k+1}\cdots$[0 $\lim\limits_{k\to \infty}\mathrm{diam} E_k=0$00
$\mathop{\cap}\limits {k=1}~{\infty}E k$ OO DO OO OO0
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$\mathrm{diam}\ E = \sup\{\|\boldsymbol{x}, \boldsymbol{y}\|, \boldsymbol{x}, \boldsymbol{y}\in
E\}$[0 $E$ DO OO
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0 00 0O O[Bolzano-Weierstrass[]

$\mathbf{ThA\1422N\text{0O O OO OO }$

$\mathbb{R}*n$ 00O OO $\{x k\}sOoooOooOOO

ggd

$\mathbf{Def\\ 14.2.1\text{JU O O O }$

0 $S$ O $\mathbb{R}"*n$ 00O OO $\mathbb{R}"n$ OO T OO $\{U \alpha\}$ OO
$\cup_\alpha U \alpha \supset S$0 0 0O $\{U \alpha\}$ 0 $S$ 0000000

04500000000 ${U \alpha\}$ 0000000000000 $S$000 $S$400000

guoooon

$\mathbf{Th.\\ 14.23}N\text{J0 OO0 OO0 OO}
O $E$ O $\mathbb{R}"n$ 00O OO00DODOOODOO

1. $E$ 00000
2.$6$ 000000000000 0ODOCOOOODODOO $E$DO
3.$6$ 000000

1430000000 og

ud

$\mathbf{Def\\ 14.3.1}\text{JO O O O O }$

$\mathbb{R}"™"n$ 0000 $R$ 000 $f$ 00 $n$ 00 0O00O0COOO0O $f$00O0O
O 0$\{f(\boldsymbol{x})\}\subset R$ O $f$ O O 0O O

$z=f(\boldsymbol{x})$ O $z=f(x_1, \cdots, x n)$
DOooooooo $z=f(x,y)$
$\mathbf{Def\\ 14.3.2N\text{JU O O O }$

$D\subset \mathbb{R}~n$[1$z=f(\boldsymbol{x})$ DO OO $D$ 00 $n$ O O
O 0$\boldsymbol{a}\in\mathbb{R}"n$ O $D$ 00 OO OJ$AS 0D IO OO
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$\lim\limits_{\boldsymbol{x}\to\boldsymbol{a} }f(\boldsymbol{x})=Al\iff \forall \varepsilon>0,\exists
\delta>0,\forall \boldsymbol{x}\in B_{\varepsilon}(\boldsymbol{a}),|f(\boldsymbol{x})-
A|<\varepsilon$

0 $AS$ O $f(\boldsymbol{x})$ O $\boldsymbol{a}$ OO OO OO

0 0 0 O[JHeine-Borel[]

$\mathbf{ThA\14.3.1\text{0O OO OO }$
$D\subset \mathbb{R} ~n$[$z=f(\boldsymbol{x})$ OO OO $D$ OO0 $n$ 00O 0O 00O

$\lim\limits_{\boldsymbol{x}\to\boldsymbol{a}}f(\boldsymbol{x})=Al\iff \forall
\{\boldsymbol{x} k\}\subset D, \boldsymbol{x} k\neq \boldsymbol{a},
\boldsymbol{x}_k\to\boldsymbol{a}(k\to\infty)$0C O $\lim\limits_{k\to

\infty }f(\boldsymbol{x} k)=A$

goog

$\mathbf{Def\\ 14.3.3Ntext{00 O OO O}$

$D\subset \mathbb{R}~n$[1$z=f(\boldsymbol{x})$ OO 00O $D$ 000 DOOOCOODO0O $(x 0,y 0)$0
O0000000%$y\neqy 0$00 O $\lim\limits_{x\to x 0}(x,y)$ OO OO OO $\lim\limits_{y\to
y_ORlim\limits_{x\to x 0}f(x, y)$ 000000000000 $f(x,y)$00 $(x 0,y 0)$ 00 $x$ 00
sy¢ 000000

$\mathbf{Th.\\ 14.3.2}$

0000 $f(x,y)$ 000000000 DO0OO00ODODOOO0ODOOOOO™

gd

$\mathbf{Def\\ 14.3.3Ntext{J0 O OO O}$

$D\subset \mathbb{R}~n$[1$z=f(\boldsymbol{x})$ DO OO $D$ 00 $n$ 00O OO OO
$\boldsymbol{a}\in D$OC $\lim\limits_{\boldsymbol{x}\to

\boldsymbol{a} }f(\boldsymbol{x})=f(\boldsymbol{a})$000 O O O $f(\boldsymbol{x})$ O
$\boldsymbol{a}$ O O OO

OOO00O $fs0 4D 0DOODOO0

goodooooogo

000000000000 00 $fs0000000000 $ff00000O000O0O0O0O0O
$\mathbf{Example. \ 14.3.7 }\text{}$

00000 $\det: M_{n\times n}\to \mathbb{R}$ 00O O00OOC OO $M _{n\timesn}$ 00O
$\mathbb{R}~{n"2}$[]
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$n$ 00 0D000O000ODO0OO
0 $P(\boldsymbol{x}), Q(\boldsymbol{x})$ O $n$ 0 0 O O

$\lim\limits_{\boldsymbol{x}\to\boldsymbol{a} }P(\boldsymbol{x})Q(\boldsymbol{x})=P(\boldsymbol

{a})Q(\boldsymbol{a}),
\lim\limits_{\boldsymbol{x}\to\boldsymbol{a} }\frac{P(\boldsymbol{x})} {Q(\boldsymbol{x})}=\frac{
P(\boldsymbol{a})}{Q(\boldsymbol{a})}, (Q(\boldsymbol{a})\neq 0)$

144000000000

goon

$\mathbf{Def\\ 14.4.1\text{J0 O OO O}$

$D\subset \mathbb{R}~n$[$z=f(\boldsymbol{x})$ DO OO $D$ 00 $n$ 0O OO OO $\forall
\varepsilon>0,\exists \delta >0,\forall \boldsymbol{x},\boldsymbol{y}\in D, (\]\boldsymbol{x}-
\boldsymbol{y}\|<\delta\Rightarrow |f(\boldsymbol{x})-f(\boldsymbol{y})|<\varepsilon)$J0 O O O
$f¢ 0 $D$SO0O0OOOO

goog

$\mathbf{Def\\ 14.4.2 }\text{}$

$D\subset \mathbb{R}~n$[1$\boldsymbol{f}: D\to \mathbb{R}"m$ O $D$ O $\mathbb{R}"m$ O O
0000 $\boldsymbol{x} O\in D$00 O $\forall \varepsilon>0,\exists \delta >0,\forall
\boldsymbol{x}\in D, (\|\boldsymbol{x}-\boldsymbol{x_0}\|<\delta\Rightarrow
[\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}(\boldsymbol{x _0})|<\varepsilon)$(C O O O
$\boldsymbol{f}$ 0 O $\boldsymbol{x} 0$ O OO

oooooooon

Oo0ooo

$$\left(\begin{matrix} z_1\\ \vdots\\ z_m \end{matrix}\right)=\left(\begin{matrix} f 1(x 1, \cdots,
x_n)\\ \vdots\\ f m(x_1, \cdots, x_n) \end{matrix}\right)$$

gd

$\mathbf{Th.\\ 14.4.1}\text{}$
$\boldsymbol{f}: \mathbb{R} ~n\to\mathbb{R}"m$ O O O O O $\iff \forall f i$0s$f i$ 00O OO OO0

$\mathbf{Th.\\ 14.4.2}$
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$\boldsymbol{f}: \mathbb{R}~n\to\mathbb{R}"m$J0 00 00O 00O

1. $\boldsymbol{f}$ OO O OO

2. O $\mathbb{R}"™n$ OO O OO 0O0O $\boldsymbol{x} n\to \boldsymbol{x} O(n\to \infty)$(0 O
$\boldsymbol{f}(\boldsymbol{x} n)\to \boldsymbol{f}(\boldsymbol{x} 0)(n\to \infty)$

3. 00000 $E\subset \mathbb{R}"ms$$\boldsymbol{f}~{-1}(E)$ O $\mathbb{R}"n$ O OO

$\mathbf{Th.\\ 14.4.3}$

Oobo0oOobDOooobooooooo

$\mathbf{Th.\\ 14.4.4}$

$D$ O $\mathbb{R}"n$ DO O O0$f$ 0 $D$ 0000 OO OOOOOOOO

1.0000O0$fs 0 ¢$bs 0000
2. 00000¢fs 0 ¢D$O0000DODDODOOODODODO
3.$f$0 $D$ODOOOODO

$\mathbf{Th.\\ 14.4.6}$

dddddoooodouuoooooooo

HEN

0000000 o0ooobooobobooob 20000 booobooboOoooobooo

$\mathbf{Th.\\ 14.4.7}$

$D$ O $\mathbb{R}*n$ DO DO O[Q$f$ 0 $D$ 0D DO OO OO $\forall y\in \mathbb{R}, (\exists
\boldsymbol{x} 1, \boldsymbol{x} 2\in D, y\in[f(\boldsymbol{x} 1), f(\boldsymbol{x} 2)]\Rightarrow
\exists \boldsymbol{x}\in D, \mathrm{s.t.}\ y=f(\boldsymbol{x}))$

oo oogd

p1doogdgogn
goad

000 $D\in\mathbb{R}™n, f: D\to \mathbb{R}$[00 $D$ O 0O O OO $\boldsymbol{x} 0$00 O $D$
0 $\boldsymbol{x} 0$ O 0O 00O $x$00 O

$f(\boldsymbol{x})-f(\boldsymbol{x} 0)=\lambda_1\Delta x_1+\lambda_2\Delta
X_2+\cdots+\lambda_n\Delta x_n+o(\|\Delta \boldsymbol{x}\|)$

0 O O%$\lambda_1, \cdots, \lambda_n$ O O O J$\Delta \boldsymbol{x}=\boldsymbol{x} -
\boldsymbol{x} 0=(\Delta x_1, \cdots, \Delta x_n)$[]

00000 $f$ 0 $\boldsymbol{x} 0$ OO OO
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0000000 $f$ 0 $\boldsymbol{x} 0$ 000000 O00OOOOOODO
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gd

$\mathbf{Def\\ 15.1.2}$

000 $D\in\mathbb{R}~n, f: D\to \mathbb{R}$[00 $D$ O O O 0O O $\boldsymbol{x} 0=(x_1,
\cdots, x_n)$00 O

$\lim\limits_{\Delta x_i\to 0}\frac{f(x_1, \cdots, x_i+\Delta x_i, \cdots, x_n) - f(x_1, \cdots, x_i, \cdots,
x_n)}{\Delta x_i}$

00000 $f$ 0 $\boldsymbol{x} 0$ 0000 $is 0 0000000000000 $f$0
$\boldsymbol{x} 0$ 0 OO $x i$ 0000000 $\frac{\partial f}{\partial x_i}(\boldsymbol{x_0})$
0 $f {x_i}(\boldsymbol{x} 0)$

$\mathrm{d}f(\boldsymbol{x} 0) = \sum\limits_{k=1}"~{n}\frac{\partial f} {\partial
x_k}(\boldsymbol{x} _0)\mathrm{d}x_k$

gobooobooood

gd

000 $D\subset \mathbb{R}"n, f: D\to \mathbb{R}$[]0 0 $E$ 00O OO
$\boldsymbol{x} 0=(x_1, \cdots, x_n)$00 O O O $f$ O $\boldsymbol{x} 0$ OO 00 O00O0OOOCOO
oogao

$(\frac{\partial f}{\partial x_1}(\boldsymbol{x} 0), \cdots, \frac{\partial f}{\partial
x_n}(\boldsymbol{x} 0))$ O $f$ O $\boldsymbol{x} 0$ OO 0O 0O O $\mathrm{grad}\
f(\boldsymbol{x} 0)$

goon

$\boldsymbol{u}$ O O O 0O O O O$\boldsymbol{x} O\in D$[0 O $\lim\limits_{t\to

0~ {+} }\frac{f(\boldsymbol{x} 0+t\boldsymbol{u})-f(\boldsymbol{x} 0)}{t}$ 0O $f$ O
$\boldsymbol{x} 0$ O 0O OO $\boldsymbol{u}$ 00000000 $\frac{\partial f}{\partial
\boldsymbol{u} }(\boldsymbol{x}_0)$.

goooon

0 $z=f(x,y)$ 00 $(x 0,y 0)$ 00000000000 $\lim\limits_{\Delta x\to
ORfrac{f(x_0+\Delta x, y 0)-f(x 0,y 0)}{\Deltax}$ DO OO OO OO0OO $z=f(x,y)$ 0O $(x 0,
y0)$00 $x$0000ODO

0 $y$ 00000
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000000000
0oooo
0$x$ 00000000 $y=y 04000 $M0$0000 $M OT x$0 $x$ 00000

0 $y$ 000

guooooon

$\mathrm{d}z=\frac{\partial f} {\partial x}\mathrm{d}x+\frac{\partial f} {\partial y}\mathrm{d}y$
O O 0$\mathrm{d}u=\frac{\partial u} {\partial x}\mathrm{d}x+\frac{\partial u} {\partial
yHmathrm{d}y+\frac{\partial u}{\partial zZ}\mathrm{d}z$

gooo

OO0O0DO0O0O000 $\not\Rightarrow$ DO OO0

good

00000 $\Rightarrows DO OO0 000000000 $\mathrm{d}f = \sum \frac{\partial f}{\partial
x_iH\mathrm{d}x_i$

good

0000 $z=f(x,y)$ 00 00O $\frac{\partial z} {\partial x}, \frac{\partial z} {\partial y}$ O O $(x O,
y_0)$DDDDDDDDDDDDDDDDDDDDDDDDDD

googod

00000 $\Rightarrow$ OO0 OO
OO000 $\Rightarrow$s OO OO
0000 $\Rightarrow$s OO0 OO0 OO
ooog

1. $f(x, y) = \sqrt{x"2+y"2}$ 000 0O

2. $f(x, y) = \begin{cases}\frac{xy}{x"2+y”"2}, & x*2+y”~2\neq 0\\ 0, &
x"2+y~2=0\end{cases}$

3. $f(x, y) = \begin{cases}\frac{xy}{x"2+y~2}, & (x, y)\neq (0, 0O)\\ 0, & (x, y)=(0,
0)\end{cases}$

$f$ O O $\boldsymbol{x} 0=(x_1, \cdots, x n)$ O O $\Rightarrow$ O $f$ O $\boldsymbol{x} 0$ O
00000 $\boldsymbol{u}$ OO OO OOOOODO
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2020-2021:teams:mian:pantw:real_analysis https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:mian:pantw:real_analysis&rev=1588909521

00 $(u_l,u 2, \cdots,u n)$ 00000 $\boldsymbol{u}$ 0O OO OO

15200000000

goon

o0oOoO0ooooo
$u=\phi(t), v=\psi(t)$ OO $t$ 00000 $z=f(u,v)$OO OO $(u,vV)$OOODOOOOO
$z=f[\phi(t), \psi(t)]$ 0000 $t$ 000 000000000000

$\frac{\mathrm{d}z} {\mathrm{d}t}=\frac{\partial z} {\partial
ut\frac{\mathrm{d}u} {\mathrm{d}t} +\frac{\partial z} {\partial
vHfrac{\mathrm{d}v}{\mathrm{d}t}$

goodoooood
$u=\phi(x, y), v=\psi(x, y)$ 00 $(x, y)$ JO OO OO0 $z=f(u, v)$ OO OO $(u,v)$0OOCOOODO

000 $z=f\phi(x, y), \psi(x, y)]$ 0000 $(x,y)$ 00 0000000000000

$\frac{\partial z} {\partial x}=\frac{\partial z} {\partial u}\frac{\partial u}{\partial x} +\frac{\partial
z}{\partial v}\frac{\partial v}{\partial x}$

$\frac{\partial z} {\partial y}=\frac{\partial z} {\partial u}\frac{\partial u}{\partial y} +\frac{\partial
z}{\partial v}\frac{\partial v}{\partial y}$

00 $f(u 1,\ldots,u m)$ 0000 $(u_1,\ldots, u m)$Q$u_k(x 1, \ldots, x_n), k=1, 2,\ldots, m$ O
$(x_1,\ldots, x n)$ 0 OO

$\frac{\partial f}{\partial x_i}=\sum\limits_{k=1}"~{m}\frac{\partial f} {\partial u_k}\frac{\partial
u_k}{\partial x_i}, i = 1, \ldots, n.$

good

$z = f(u, x, y), u = \phi(x, y)$
$z = f(\phi(x, y), x, y)$
O %v=x,w=y$

$\frac{\partial v} {\partial x}=\frac{\partial w}{\partial y} = 1, \frac{\partial w}{\partial
x}=\frac{\partial v} {\partial y}=0%
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O

$\frac{\partial z}{\partial x} =\frac{\partial f} {\partial u}\frac{\partial u}{\partial x}+\frac{\partial
f}{\partial x}$

$\frac{\partial z} {\partial y}=\frac{\partial f} {\partial u}\frac{\partial u}{\partial y} +\frac{\partial
f}{\partial y}$

0000 $\frac{\partial z}{\partial x}$ O $\frac{\partial f} {\partial x}$.

000000 O0OQacobian OO

$\mathbf{Def\\ 15.2.1}%

000000 $\boldsymbol{f}: D\subset \mathbb{R} ~n\to \mathbb{R} ~m$[0 $\boldsymbol{x} 0 =
(x_1,\cdots, x N\in D$0 0 O 0O $m\times n$ 00O 0O $A=(a_{ij})_{m\times n}$00 O

$\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}(\boldsymbol{x} 0)=A\Delta
\boldsymbol{x} +r(\Delta \boldsymbol{x})$

$\lim\limits_{\|\Delta \boldsymbol{x}\|\to 0}\frac{\|r(\Delta
\boldsymbol{x})\|}{\|\Delta\boldsymbol{x}\|}=0$

00 $\boldsymbol{f}$ O $\boldsymbol{x} 0$ OO O OO0 $A\Delta \boldsymbol{x}$ O
$\boldsymbol{f}$ O $\boldsymbol{x} 0$ OO OO 0ODO0O
$\mathrm{d}\boldsymbol{f}(\boldsymbol{x} 0)=A\mathrm{d}\boldsymbol{x}$.

$$)\boldsymbol{f}(\boldsymbol{x} 0)=\left[\begin{matrix} \frac{\partial

f 1(\boldsymbol{x_0})}{\partial x_1} & \cdots & \frac{\partial f n(\boldsymbol{x_0})}{\partial x_n} \\
\vdots & \ddots & \vdots \\ \frac{\partial f 1(\boldsymbol{x_0})}{\partial x_1} & \cdots & \frac{\partial
f 1(\boldsymbol{x_0})}{\partial x_1} \\ \end{matrix}\right]$$

0000000 $\boldsymbol{f}$ OO $\boldsymbol{x} 0% O Jacobian O OO

OO0O0D0O00 $mitimesn$ 0O O0OO JacobianO OO OO
$\mathrm{d}\boldsymbol{f}(\boldsymbol{x} 0)=J\boldsymbol{f}(\boldsymbol{x} 0)\mathrm{d}\bol
dsymbol{x}$

guoooobn

000 $E\subset \mathbb{R} "I, D\subset \mathbb{R}"m$J0 O $\boldsymbol{g}: E\to D,
\boldsymbol{f}:D\to \mathbb{R}"~n$J0 0 0 O O O $\boldsymbol{h}=\boldsymbol{f}\circ
\boldsymbol{g}: E\to R_n$.

00 $\boldsymbol{g}$ O $\boldsymbol{u} O\in E$ O O O [$f$ O

$\boldsymbol{x} 0=\boldsymbol{g}(\boldsymbol{u} ONinD$ OO OO OO OO0 $\boldsymbol{h}$
0 $\boldsymbol{u} 0$ 00O OO0

$J\boldsymbol{h}(\boldsymbol{u} 0)=J\boldsymbol{f}(\boldsymbol{x} 0)J\boldsymbol{g}(\boldsymb
ol{u}_0)$
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guooobbogogad
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$z="f(u, v)$
$\mathrm{d}z=\frac{\partial z} {\partial u}\mathrm{d}u+\frac{\partial z} {\partial v}\mathrm{d}v$

$u,v$ 000 O00O0DOODOOO

153000000 n

gooo

$z=f(x,y)$ 00O OO0
gooono

$\frac{\partial} {\partial x}(\frac{\partial z} {\partial x})=\frac{\partial~2 z} { {\partial
x} 2} =f_{xx}(x, y)$

$\frac{\partial} {\partial y}(\frac{\partial z} {\partial y})=\frac{\partial~2 z} { {\partial
y}"2}=f {yy}(x, y)$

gooogd

$\frac{\partial} {\partial y}(\frac{\partial z} {\partial x})=\frac{\partial~2 z} {{\partial x}\partial
y}=f_{xy}(x, y)$

$\frac{\partial} {\partial x}(\frac{\partial z}{\partial y})=\frac{\partial~2 z} {\partial y\partial
x}=f_{yx}(x, y)$

guoooooon

D00 $z=f(x,y)$ 0000000000 $f {xy},f{yx}$000 ¢$D$ 00000000 OODOO0ODO
00oo0ooooon

goad

O $D\subset \mathbb{R}"n$ DO OO0 0OO $D$ 0000000000000 $DS0 OO DO OO0
$x_0, x_1\in D, \forall \lambda \in [0, 11$00 $x_O+\lambda(x 1-x ONin D$J0 O $D$ 0O DO OO

gooo

0000 $fx, y)$00O0D0O $D$S 000 DOO

00 $D$ 00000 $(x 0,y 0)$ 0 $(x 0+\Delta x, y 0+\Delta y)$00 0 0 000 $\theta\in(0, 1)$0
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g

$f(x_O0+\Delta x, y_O+\Delta y) - f(x_0, y 0) = f x(x_O+\theta \Delta x, y_0+\theta \Delta y)\Delta x +
f y(x_O+\theta \Delta x, y_O+\theta \Delta y)\Delta y$

goo

O $D \subset \mathbb{R}~n$ O O O O [J$f:D\to \mathbb{R}$ O 0O O 0O O $\boldsymbol{a},
\boldsymbol{b} \in D$00 O $\boldsymbol{\xi}\in D$Q0 O O

$fl(\boldsymbol{b}) - f(\boldsymbol {a})=Jf(\boldsymbol{\xi})(\boldsymbol {b}-
\boldsymbol{a})$[0$\boldsymbol{\xi}=\boldsymbol{a}+\theta(\boldsymbol{b}-\boldsymbol{a}),
\theta\in (0, 1)$0

goog

good

$\mathbf{Th.\\15.3.2}$

000 $f(x,y)$ 00 $(x 0,y 0)$ 000 $U$S 000 $k+1$ 00000000000 $U$000OO
$(x_O+\Delta x, y 0+\Delta y)$ O O

$f(x_O+\Delta x, y_0+\Delta y)=f(x_0, y_0)+(\Delta x\frac{\partial}{\partial x} +\Delta
y\frac{\partial} {\partial y})f(x 0, y _0)+\frac{1}{2!}(\Delta x\frac{\partial} {\partial x} +\Delta
y\frac{\partial} {\partial y})"2f(x_0, y_0)+\cdots+\frac{1}{k!}(\Delta x\frac{\partial} {\partial
x}+\Delta y\frac{\partial}{\partial y})~k f(x_0, y_0)+R_k$

$R_k=\frac{1}{(k+1)!}(\Delta x\frac{\partial} {\partial x}+\Delta y\frac{\partial} {\partial
y})~{k+1}f(x_O0+\theta\Delta x, y_O+\theta \Delta y), \quad \theta\in(0,1)$ O O Lagrange 0 OO

$$(\Delta x\frac{\partial} {\partial x}+\Delta y\frac{\partial} {\partial
y}H ™ {p}r=\sum\limits_{i=0}"~{p}C_p~i\frac{\partial~p f}{{\partial x} ~{p-i}{\partial y}~i}(x 0,
y_0)(\Delta x)~{p-i}(\Delta y)~i$$

gooooooobooooboobood
000000000 LeibnizOODOOO

r ooooooo .

good

$\mathbf{Th.\\ 15.3.3}$

000 $f(x 1, x 2,\ldots, x n)$ 00O $(x 170,\ldots, x n~0)$ 0000 $k+1$4 00 00000OOODO
gogn

$$f(x_170+\Delta x_1, x_2"~0+\Delta x_2,\Idots, x_n”~0+\Delta x_n)=$$ $$f(x_1~0, x_ 270, \Idots,
x_n~0) +(\sum\limits_{i=1}"{n}\Delta x_i\frac{\partial}{\partial x_i})f(x_170, x_2"0, \ldots,
x_n"~0)$$ $$+\cdots+\frac{1} {k!}(\sum\limits_{i=1}"{n}\Delta x_i\frac{\partial} {\partial x_i})"k
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f(x_ 170, x 270, \ldots, x n~0)+R _k $$
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$R k =\frac{1}{(k+1)!}(\sum\limits_{i=1}"{n}\Delta x_i\frac{\partial} {\partial x_i})"~{k+1}
f(x_1~0+\theta\Delta x_1, x 2"0+\theta\Delta x_2, \ldots, x_n”~0+\theta\Delta x_n), \quad \theta
\in(0, 1)$

O Lagrange O OO

gobooobboooboo

O $\boldsymbol{\alpha}=(\alpha_1, \ldots, \alpha n)$ 00O O0O0OO0ODO
$[\boldsymbol{\alpha}|=\alpha_l+\cdots+\alpha n$[$\boldsymbol{\alpha}!=\alpha_1N\alpha 2'\cdot
s\alpha_n!$[]

O $\boldsymbol{x}=(x_1, \cdots, x_n)$00
$\boldsymbol{x} "~ {\boldsymbol{\alpha}}=x 1~ {\alpha_1}\cdots x n™{\alpha n}$

0
$(x_1+\cdots+x_n)~k=\sum\limits_{|\boldsymbol{\alpha}|=k}\frac{k!}{\alpha! }\boldsymbol{x} " {\b
oldsymbol{\alpha}}$

000000 $\boldsymbol{\alpha}l$ OO O OO0

$\boldsymbol{D} "~ {\boldsymbol{\alpha} }f(\boldsymbol{x})=\frac{\partial ~ {|\boldsymbol{\alpha}|}f
H\partial x_17~{\alpha_1}\partial x 2" {\alpha_2}\cdots\partial x_n”{\alpha _n}}(x)$

$\mathbf{Th.\\15.3.4}$

$D\subset \mathbb{R}~n$ 0O 0O O O J$f:D\to \mathbb{R}$ 0O $m+1$ 000000000 $\theta
\in (0, 1)$ 00O

$$f(\boldsymbol{x}-
\boldsymbol{x}_0)=\sum\limits_{k=0}"~{m}{\sum\limits_{|\boldsymbol{\alpha}|=k} } {\frac{\boldsy
mbol{D} "~ {\boldsymbol{\alpha} }f(\boldsymbol{x} 0)}{\boldsymbol{\alpha}!}}(\boldsymbol{x}-
\boldsymbol{x} 0)"{\boldsymbol{\alpha}}+R m$$

$$R_m={\sum\limits_{|\boldsymbol{\alpha}|=k+1}}{\frac{\boldsymbol{D} "~ {\boldsymbol{\alpha} }f
(\boldsymbol{x} O+\theta(\boldsymbol{x}-
\boldsymbol{x_0}))}{\boldsymbol{\alpha}!}}(\boldsymbol{x}-
\boldsymbol{x}_0)"{\boldsymbol{\alpha}}$$

$$f(\boldsymbol{x})=f(\boldsymbol{a})+]f(\boldsymbol{a})(\boldsymbol{x}-\boldsymbol{a})
+\frac{1}{2}(x_1-a_1, \cdots, x_n-a_n)\left[\begin{matrix} \frac{\partial~2
f(\boldsymbol{a})}{{\partial x_1}"2} & \cdots & \frac{\partial~2 f(\boldsymbol{a})}{{\partial
x_1}\partial x_n}\\ \vdots & \ddots & \vdots \\ \frac{\partial~2 f(\boldsymbol{a})}{\partial x_n\partial
x_1} & \cdots & \frac{\partial~2 f(\boldsymbol{a})}{{\partial x_ n}"~2}
\end{matrix}\right\left(\begin{matrix} x_1-a_1\\ \vdots\\x_n-a_n \end{matrix}\right) $$

O0000000000 $Hess(f)=(\frac{\partial~2 f(\boldsymbol{a})} {\partial x_i\partial
X j})_{n\times n}$00 O $f$ O $\boldsymbol{a}$ O O Hessian 0 0 O
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15400000

guooooobooon

000 $Fix,y)$ 0000000

1. 00 $F$ 00 $P O(x 0,y 0)$ 00000000 $D\subset \mathbb{R}~2$ 00O
2. $F(x_0,y 0) = 0%

3.0$D$ 000000000 $F y(x, y)$

4. $F y(x 0,y 0)\neq 0%

00 $P0$0000 $UP O)\subsetD$S DD OO $F(x,y)=0$ 0000000000000 $(x 0-
\alpha, x 0+\alpha)$ 00O 00O $y=f(x)$00 O

1. $f(x_0)=y_0, x\in (x_0-\alpha, x_0+\alpha)$ 0 $(x, f(x)\in U(P_0)$ O $F(x, f(x))\equiv 0%
2. $f(x)$ O $(x _0-\alpha,x O+\alpha)$ O O OO

guoooooon

000 $F(x,y)$0000000000000040000000 $Fx(x,y)$0$D$0000000OD0O
000 $F(x,y)=0$ 0000000 $y=f(x)$ O $(x 0-\alpha, x O+\alpha)$ 0O OO O0OOODOO
$f'(x)=-\frac{F_x(x, y) }{F_y(x, y)}$

goooobbbbboooooobon

000 $Fix,y)$0Oooooo

.00 $F$00 $PO(x 0,y 0,z0)$00000000 $D\subset \mathbb{R}"~3$ 00O
. $F(x 0,y 0,z 0) = 0%

.0$D$00000000O0 $F x, Fy, F z$

. $F z(x 0,y 0,z 0)\neq 0%

B W N

00 $P0$0D0D00 $UPON\subsetD$ DD OO $F(x,y,2)=0$0000000000000 $U((x_0,
y_0))\subset \mathbb{R}~2$ 0000 00O $z=f(x, y)$00 O

1. $f(x_0,y_0)=z_0, (x, yNin U((x_0, y_0))$ O $(x, y, f(x, y)\in U(P_0)$ O $F(x, y, f(x, y))\equiv 0$
2. $z=f(x,y)$ 0 $U((x O,y ONs DO O oo ooon $\frac{\partial z}{\partial x} =-\frac{\partial
x}{\partial z}, \frac{\partial z} {\partial y}=-\frac{\partial y} {\partial z}$[]

oogoon

00 $$ \frac{\partial (F, G)}{\partial (u, v)} = \left|\begin{matrix} F u&F v\ G u& G v \\
\end{matrix}\right|\neq 0 $$

oo

1. 00 $F(x,y,u,v),G(x,y,u,v)$ 00 $P 0(x 0,y O,u0,v0)$0000O0O0O0O $V\subset
\mathbb{R}~4$ 0 0O O
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2. $F(x 0,y 0,u 0,v 0)=G(x 0,y 0,u 0,v 0)=09%
3.0%$v$0$F, GSO0IDO0DOOO

4. $\left.{\frac{\partial(F, G)} {\partial(u, v)} }\right| {P_0} \neq 0%
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OO0 $P0$0DO0ODO $U(P O)\subsetV$ 0D OO $F(x,y,u,v)=G(x,y,u,v)=0$ 0000000000
000 $U((x 0,y 0)\subset \mathbb{R}"~2$ 0D OO0 0ODO0O $u=f(x,y), v=a(x, y)$00d O

1. $f(x_0, y_0)=u_0, g(x_0, y_0)=v_0$00 O $(x, y\in U((x_0, y_0))$ O $(x, y, f(x, y), g(x, y)\in
U(P_0)$ O $F(x, vy, f(x, y), g(x, y)\equiv O\equiv G(x, vy, f(x, y), g(x, y))$
2. su=f(x, y), v=g(x, y)$ O $U((x 0,y 0))$ 00O O
3.%u,v$ 0 $U(x O,y ON$ OO0 oong
$\frac{\partial u}{\partial x}=-\frac{1} {J}\frac{\partial (F, G)} {\partial (x, v)}$
$\frac{\partial v}{\partial x}=-\frac{1}{)\frac{\partial (F, G)}{\partial (u, x)}$
$\frac{\partial u} {\partial y}=-\frac{1}{J}\frac{\partial (F, G)}{\partial (y, v)}$

$\frac{\partial v}{\partial y}=-\frac{1}{J}\frac{\partial (F, G)}{\partial (u, y)}$

Ly oo ogn

guoooobood

$F(x, y)=0$

O 0[03%y - y_0=f(x_0)(x-x_0)$

00 [0%y - y_0=-\frac{1}{f'(x_0)}(x-x_0)$%

00 0$F _x(x_0,y_0)(x-x_0)+F_y(x_0, y_0)(y-y_0)=0%

O 00%$F y(x 0,y 0)(x-x_0)-F x(x_0,y 0)(y-y 0)=0%

guoooobobboogn

O O 0%$\frac{x-x_0}{x'(t_ 0)}=\frac{y-y 0}{y'(t 0)}=\frac{z-z 0}{z'(t 0)}$
00 O0%$x'(t 0)(x-x_0)+y'(t_0)(y-y_0)+2z'(t_0)(z-z_0)=0%
gdag

$$ \frac{x-x_0}{\left.{\frac{\partial(F, G)}{\partial(y, z)} Y\right| {M_0} }=\frac{y-
y_0}{\left.{\frac{\partial(F, G)} {\partial(z, x)} }\right| {M_0}}=\frac{z-z_0}{\left.{\frac{\partial(F,
G)}{\partial(x, y)} Hright|_{M_0}} $$

good

$$ (x-x_O)\left.{\frac{\partial(F, G)}{\partial(y, z)} H\right| {M_0}+(y-y_O)\left.{\frac{\partial(F,
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G)}{\partial(z, x)} }\right| {M_0}+(z-z_0){\left.{\frac{\partial(F, G)}{\partial(x, y)} }\right| {M 0}}=0
$$

goooooobon

$F(x,y, 2)=0%

good

$F x(x_0,y 0,z 0)(x-x_0)+F_y(x 0,y 0, z 0)(y-y_0)+F _z(x_0,y_0, z 0)(z-z_0)=0%
ggg

$\frac{x-x 0}{F x(x 0,y 0,z 0)}=\frac{y-y 0}{F y(x 0,y 0, z 0)}=\frac{z-z 0}{F z(x 0,y O,
z 0)}$

e nooon

guoooon

ugd

$\forall \boldsymbol{x}\in \mathbb{R}~n$[0 O
$\boldsymbol{x}'A\boldsymbol{x}>0$00 0 $A$ DO O OO0
$\boldsymbol{x}'A\boldsymbol{x}>0$J0 0 $A$ OO0 OO0 00O
$\boldsymbol{x}'A\boldsymbol{x}>0$J0 0 $A$ 00O OO0
$\boldsymbol{x}'A\boldsymbol{x}>0$J0 0 $A$ 000 O0DO OO

goboooboo

HEN

$A$S 00 s\fff 00O O0O0ODOODOO
$A$S 00 $\ffs0O0DOO0ODOO

$A$ 00 $\iffa_{11}a {22}-a_{12}~2<05.

00000 Hessian 0O

00 $f(x,y)$0 $P0$ 0 0000000000000 $A=f {xx}(x 0,y 0), B=f {xy}(x 0,y 0),
C=f {yy}(x 0,y 0)$00 O $$H_f(P_0)=\left|\begin{matrix}A&B\\B&C\end{matrix}\right|$$ 0O O
Hessian O O O
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guooooon

$z=f(x,y)$ 0 $(x 0,y 0)$ 0000000000000 0000 $(x y)$0

00 $f(x, yNef(x 0,y 0)$00 0000 $(x 0,y 0)$00000 OO $f(x, y\ge f(x 0,y 0)$00 0 O O
0 $(x 0,y 0$00000

goooobbbood

ERERERN

$z=f(x,y)$ 010 $(x 0,y 0)$ 0000000 $(x 0,y 0$00000000000000000

gobogoo

$z=f(x,y)$ 00 $P.O(x 0,y 0)$ 00 000000000000 $PO0$S0 $fs 00000
$H f(P.0)$ 0O DO0O$f$ 0 $P 0$SOO DD
$H f(P.0)$ 0D O[0$f$ 0 $P 0$S DO OO

$H f(P.0)$ DO DO[$f$ 0 $P OS 0D O D

goon

O $A=f_{xx}(x_0,y_0), B=f_{xy}(x_0,y_0), C=f_{yy}(x_0,y 0)$
$AC-B™2>0\Rightarrow$
$a<O0\Rightarrow$ 0O 0O O $, a>0\Rightarrow$ O 00 O

$AC-B”2<0\Rightarrow$ O 0O O

goog

gobogobbooobobooonon

HessianO OO QOOOO

HessianO OO QOO

1570000
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guooooon

0 $z=f(x, y)$ OO0 $\arphi(x,y)=0$ 00000000

00000 $L(x, y, \lambda) = f(x, y)+\lambda\varphi(x, y)=0$00 O

$$\begin{cases}L x=f x(x, y)+\lambda\varphi_x(x, y)=0\\ L y=f x(x, y)+\lambda\varphi_y(x, y)=0\\
L \lambda=\varphi(x, y)=0\end{cases}$$

OO0 $x, y,\lambda$[jO O $x,y$ OO0 00000 OOOoOO

guoooobbbogd

000 $\warphi_k(x_1, x_2,\ldots, x_n)=0, k=1, 2, \ldots, m(m<n)$ DO OO OO $y=f(x_1,x 2,
\ldots, x n)$ 0 OO DO

O0000000QO%$L(x 1, x 2)\ldots, x_n, \lambda_1, \lambda_2, \ldots, \lambda_m) = f(x_1,
x_2\ldots, x_n)+\sum\limits_{k=1}"~{m}\lambda_k\varphi_k(x_1, x_2\ldots, x_n)$

O $f$ 0 $\arphi k$ 00 $D$ 00000000 ODOD0 $P_0(x 1~{(0)}\dots, x n”~{(0)})\in D$ O O
000000000 Jacobian OO

$$\left[\begin{matrix} \frac{\partial \varphi_1} {\partial x_1} & \cdots & \frac{\partial
\varphi_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial \varphi_m} {\partial x_1} & \cdots &
\frac{\partial \varphi_m}{\partial x_n} \end{matrix}\right] $$

0000000 $m$ 000 $\lambda_17{(0)}, \lambda_2~{(0)}, \Idots, \lambda_m~{(0)}$0C O
$(x_1~{(0)}, x 2~{(0)}, \ldots, x_n~{(0)}, \lambda_1~{(0)}, \lambda_2"~{(0)}, \ldots,
\lambda m~{(0)})$ 000000000000 00

goog

1. 0000000000000000 HessianOOODODODODODODODO
2. $HL(P_0)=\left(\frac{\partial~2L} {\partial x_j\partial x_k}\right) {P_0}$0
1. $HL(P O)$ DOODODODODO
2. $HL(P.O)$ DD DODOODOO
3.00000
3. 0000000000000 00000000O0O0/00000000O00000O0O00O0O

e O

lel0doouooooog

gooog

0000 $P\subset\imathbb{R}™2$[0 000 $T$ 00O 00O
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1. $\Delta_i$ OO OO0 $P$ 00O
2. $\Delta i$ 0000000 $P$0DO0O0OO $P$U0DODOOOOODOODO $\Delta_i$

ooooopgs$s { PHT$

ODO0DO0M0$S_{_PHT\ges_{_PHT)$

00 $\{s_{ PHT\}$ODOOOO$\{s_{ PHTN}$S OO OODO

O $\underline{l} _{ P}=\sup\limits {T}\{s_{ P}TN\}, \overline{l} { P}=\inf\limits_{T}\{S_{ P}HTN\}$
00 $0\le\underline{l}_{ P} \le\overline{I} { P}$

O $\underline{l} { P}$ 0O $P$ OO OO [O%\overline{l} { P}$ 0T $P$ OO T OO

O $\underline{l} { P} =\overline{l} { P}$00 DO $P$ 00D DO0OOOO0O0O0OODOOODOSPSOODODO

$P$ O O 0O 0O $\iff \forall \varepsilon>0, \exists T, \mathrm{s.t.}\; S_{ P}(T)-s_{ P}(T)<\varepsilon$

gooo

$\iint\limits_D f(x, y)\mathrm{d}\sigma = \lim\limits_{\lambda\to 0}\sum\limits_{i=1}"~{n}f(\xi_i,
\eta_i)\Delta\sigma_i$

googoooood

$\iint\limits_{D}f(x,y)\mathrm{d}\sigma=\iint\limits_{D}f(x,y)\mathrm{d}x\mathrm{d}y$

guoooooon

$\mathbf{Th.\;\; 16.2.1}$

$f(x, y)$ 0 $D$ 000 D0 $f(x,y)$ 0 $D$ 0O OO

$\mathbf{Th.\;\; 16.2.2}$

$f(x, y)$ O $D$ 000 $\iff \lim\limits_{\[T\|\to 0}S(T)=\lim\limits_{\|T\[\to 0}s(T)$[]
$\mathbf{Th.\;\; 16.2.3}$

$f(x, y)$ O $D$ O O O $\iff \forall \varepsilon>0, \exists T, \mathrm{s.t.}\;\;S(t)-s(T)<\varepsilon$[]
$\mathbf{Th.\;\; 16.2.4}$

dddoooooououooo

$\mathbf{Th.\;\; 16.2.5}$

$fix, y)$ 000D 000D0D0O00000D0000D00O000D0D0O000D0O0O00000 $fix,y)$000
gobodaoo
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goooon

goo

$\iint\limits_{D}kf(x,y)\mathrm{d}x\mathrm{d}y=Kk\iint\limits_{D}f(x,y)\mathrm{d}x\mathrm{d}y$

HEN

$\iint\limits_{D}[f(x,y)\pm g(X,
y)\mathrm{d}x\mathrm{d}y=\iint\limits_{D}f(x,y)\mathrm{d}x\mathrm{d}y\pm\iint\limits_{D}g(x,
y)\mathrm{d}x\mathrm{d}y$

googod

$\iint\limits_{D}f(x,y)\mathrm{d}x\mathrm{d}y=\iint\limits_{D_1}f(x,y)\mathrm{d}x\mathrm{d}y+\
iint\limits_{D_2}f(x,y)\mathrm{d}x\mathrm{d}y$

$(D=D 1\cup D 2, D 1\cap D_2=\varnothing)$

goon

00 $\sigma = \iint\limits_{D}1\mathrm{d}x\mathrm{d}y =
\iint\limits_{D}\mathrm{d}x\mathrm{d}y$

goo

O $D$ O $f(x, y)\le g(x, y)$00 O
$\iint\limits_{D}f(x,y)\mathrm{d}x\mathrm{d}y\le \iint\limits_{D}g(x,y)\mathrm{d}x\mathrm{d}y$

0 O O g$\left\iint\limits_{D}{f(x,y)\mathrm{d}x\mathrm{d}yH\right|\le
\iint\limits_{D} {\left|f(x,y)\right\mathrm{d}x\mathrm{d}y}$

googod

0000 $D$ O $mile f(x, y)\le M$O$\sigma$ 0 $D$ 000000

$m\sigma\le \iint\limits_{D}f(x,y)\mathrm{d}x\mathrm{d}y\le M\sigma$

gooogooo

0000 $D$ 0 $f(x, y)$ OO 0%\sigmas 0 $D$ 000000 $D$ 00O DO ODO $(\xi, \eta)$ OO
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$\iint\limits_{D}f(x,y)\mathrm{d}x\mathrm{d}y= \sigma f(\xi,\eta)$
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1620000000

guoooobobboogd

oogao

$D=[a, b]\times[c,d],\; f:D\to \mathbb{R}$[0 O $\forall x\in[a, b]$0$f(x, y)$ O $[c,d]$ T 0O OO O
00 $$1(x)=\int_c"df(x, y)\mathrm{d}y,\; x\in[a,b]$$ O $I(x)$ 00 $[a,bl$ 00000000
$$\int a”b I(x)\mathrm{d}x$$ 00 00000000 $$\int a~b\mathrm{d}x\int c~d f(x,
y)\mathrm{d}y$$

oo0ogao

$D=[a, b]\times[c,d],\; f:D\to \mathbb{R}$ O $D$ O O 0O O OO $\forall x\in[a, b]$0$\int_c~d f(x,
y\mathrm{d}y$ OO0 Q00000 ooood

$$\iint\limits_D f(x, y) \mathrm{d}\sigma=\int_a”b\mathrm{d}x\int_c~d f(x, y)\mathrm{d}y$$

$D=[a, b]\times[c,d],\; f:D\to \mathbb{R}$ 0 $D$ 0O 00 0O $\forall y\in[c, d]$0$\int_a”b f(x,
y\mathrm{d}x$ 0000000000000

$$\iint\limits_D f(x, y) \mathrm{d}\sigma=\int_c”~d\mathrm{d}y\int_a”b f(x, y)\mathrm{d}x$$
$f$ O $D=[a, bl\times[c,d]$ OO0 OO OO

$$\iint\limits_D f(x, y) \mathrm{d}\sigma=\int_c~d\mathrm{d}y\int_a~b f(x,
y\mathrm{d}x=\int_a”~b\mathrm{d}x\int_c~d f(x, y)\mathrm{d}y$$

guoooobobboogd

$x$ 000 $D=\{(x,y)\mid y_1(x)\le y\le y 2(x),a\le x\le b\}$
$y$ 000 $D=\{(x,y)\mid x_1(y)\le x\le x_2(y),c\le y\le d\}$

0000000000000000000 $x$0 $y$000000
0000
$f(x,y)$ 0 $x$ 000 $D$ 00 O[OSy 1(x), y 2(x)$ O $[a, bl$ 00O OO

$$\iint\limits D
f(x,y)\mathrm{d}\sigma=\int_a~b\mathrm{d}x\int_{y _1(x)}~{y_2(x)}f(x,y)\mathrm{d}y$$
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$f(x,y)$ O $y$ 00D $D$ 0O O[0O$x_1(y), x_ 2(y)$ O $[c,dls OO DO
$$\iint\limits D
f(x,y)\mathrm{d}\sigma=\int_c”~d\mathrm{d}y\int_{x_1(y)}"~{x_2(y)}f(x,y)\mathrm{d}x$$

goooobbion

goodaguo

gobogooood

goobogd

$\mathbf{Th.\;\;}$

$fix, y)$ 00000 $D$ 0000000 $T: x=x(u,v),y=y(uv)$ O $uv$ OO DD 0O0OOO0OOOO
O000 $\Delta$s DO O OO0 $xy$OOOOOODO $D$00 O $x(u, v), y(u, v)$ O $\Deltas OO 0O O
Oo0ooo0o0o00o $)(u, v)=\frac{\partial (x, y)}{\partial (u, v)}\neq 0, \forall (u, v)\in \Delta$[C]

$$\iint\limits_{D}f(x, y)\mathrm{d}x\mathrm{d}y=\iint\limits_{\Delta}f(x(u, v), y(u, v))\left|J(u,
v)\right|\mathrm{d}u\mathrm{d}v$$

Oooo0 $)=\left\frac{\partial(x, y)}{\partial(u, v) }\right|$

O $\Delta$s D00 0DDO0OO0O0ODODOOOODOOOO

googd

00 $x™2+y"24000000000D0O0OC0O00O0OOOOO

$$\iint\limits_{D}f(x, y)\mathrm{d}x\mathrm{d}y=\iint\limits_{\Delta}f(r\cos \theta,
rsin\theta)r\mathrm{d}r\mathrm{d}\theta$$

gobogooo

$$\iint\limits_{D}f(x, y)\mathrm{d}x\mathrm{d}y=\iint\limits_{\Delta}f(ar\cos \theta,
br\sin\theta)abr\mathrm{d}r\mathrm{d}\theta$$

1630000

gd

$fix,y,2)$ 00000000000 000O000C0O0O $v$0000O0sAS000O0ODOO0O0O

$$\forall \varepsilon>0, \exists \delta>0, \mathrm{s.t.}\; \forall T, \|T\|<\delta\Rightarrow \left(\forall
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(\xi_i, \eta_i, \zeta_i)\in V_i, \left\sum\limits_{i=1}"{n}f(\xi_i, \eta_i, \zeta_i)\Delta V _i-
Alright|<\varepsilon\right)$$

2020-2021:teams:mian:pantw:real_analysis https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:mian:pantw:real_analysis&rev=1588909521

00 $f(x,y,2)$0 $VS OO OQ$AS 00O $fs 0 $vés 00O OOO0O
$$A=\iiint\limits_{V}f(x, y, z)\mathrm{d}V$$
O

$$A=\iiint\limits_{V}f(x, y, z)\mathrm{d}x\mathrm{d}y\mathrm{d}z$$

gooooboo

$f(x, y, 2)$ O $V=[a, b]\times[c,d]\times[e,h]$ OO0 00000000000 $(x,y)\inD, D=[a,
b\times [c, d]$00C O O $F(y, z) =\int_e™h f(x, y, zZ)\mathrm{d}z$ OO OO
$\iint\limits_{D}\mathrm{d}x\mathrm{d}y\int e”h f(x, y, z)\mathrm{d}z$ OO OO

$$\iiint\limits_{V}f(x, v,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z=\iint\limits_{D}\mathrm{d}x\mathrm{d}y\int e~h f(x, v,
z)\mathrm{d}z$$

$f(x, y, 2)$ O $V=[a, b]\times[c,d]\times[e,h]$ OO O OO ODOO0OOOO $z\in[e, h]$0 O OO
$1(z) = \iint\limits_{D} f(x, y, z)\mathrm{d}x\mathrm{d}y$ O O 0$D=[a,b]\times[c,d]$00 $\int e~h
\mathrm{d}z\iint\limits_{D} f(x, y, z)\mathrm{d}x\mathrm{d}y$ OO0 OO

$\iiint\limits_{V}f(x, y, z)\mathrm{d}x\mathrm{d}y\mathrm{d}z=\int e”~h
\mathrm{d}z\iint\limits_{D} f(x, y, z)\mathrm{d}x\mathrm{d}y$$

$\iiint\limits_{V}f(x, y, z)\mathrm{d}x\mathrm{d}y\mathrm{d}z=\int_a”~b \mathrm{d}x\int c~d
\mathrm{d}y\int_e~h f(x, y, z)\mathrm{d}z$$

0

$\mathbf{Prove:}$ $$\int 0"~ x \mathrm{d}wint_0”~vimathrm{d}u\int 0~ uf(t)\mathrm{d}t =
\frac{1}{2}\int_ 0" x(x-t)"2f(t)\mathrm{d}t$$

$\mathbf{Proof:}$

$$\because \int_0"~vimathrm{d}u\int_0~uf(t)\mathrm{d}t=\int_0~v\mathrm{d}t\int_t"v f(t)
\mathrm{d}u=\int_0"v (v-t) f(t) \mathrm{d}t$$ $$\therefore \int 0"x
\mathrm{d}wint 0"~ vimathrm{d}u\int 0~ uf(t)\mathrm{d}t = \int_0"x \mathrm{d}w\int 0™v (v-t)
f(t) \mathrm{d}t$$ $$=\int_0"x \mathrm{d}t\int_t~x (v-t) f(t) \mathrm{d}v=\int_0"x
\mathrm{d}t\int_t"~x (v-t) f(t) \mathrm{d}v$$ $$=\int 0~ x \mathrm{d}t\left[\frac{1}{2}(v-t)"~2
f(th\right]_t~x=\frac{1}{2}\int 0" x(x-t)"2 f(t)\mathrm{d}t $$

gooooon
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gooogd

$fix,y,2)$ 000000 $v$s OO OOOO0O $T: x=x(u, v, w), y=y(u, v, w), z=z(u, v, w)$J00 $uvw$
000000 $V$sOOonDoonD $xyz$OOOOOO $v$Oo O $x(u, v, w), y(u, v, w), z(u, v, w)$ O O
0000000 ¢$vsOoonoooooooog $)(u, v, w=\left|\frac{\partial(x, y, z) }{\partial(u, v,

w) Hright|\neq 0, (u, v, w)\in V'$0C

$\iiint\limits_{V}f(x, y, z)\mathrm{d}x\mathrm{d}y\mathrm{d}z=$$ $$\iiint\limits_{V'}f\left(x_{(u,

v, W)}, y {(u, v, w)}, z {(u, v, w)Hright)\left|)(u, v,
w)\right|\mathrm{d}u\mathrm{d}vimathrm{d}w$$

goodogo

$$\begin{cases} x=r\cos \theta,\\ y=r\sin \theta,\\ z=z. \end{cases}$$
Jacobian O O OO

$$)=\frac{\partial(x, y, z)} {\partial(r, \theta, z)} =\left|\begin{matrix} \cos\theta & -r\sin \theta & 0\\
\sin\theta & -r\cos \theta & 0\\ 0 & 0 & 1 \end{matrix}\right|=r$$

$\iiint\limits_{V}f(x, y, z)\mathrm{d}x\mathrm{d}y\mathrm{d}z=$$

$$\iiint\limits_{V'}f\left(r\cos\theta, r\sin\theta,
z\right)r\mathrm{d}r\mathrm{d}\theta\mathrm{d}z$$

googad

$$\begin{cases} x=r\sin \varphi \cos \theta,\\ y=nr\sin \varphi \sin \theta,\\ z=r\cos \varphi.
\end{cases}$$

Jacobian D O OO

$$)=\frac{\partial(x, y, z)}{\partial(r, \varphi, \theta) } = \left|\begin{matrix} \sin\varphi\cos\theta

&r\cos\varphi\cos\theta & -r\sin\varphi\sin\theta\\ \sin\varphi\sin\theta &r\cos\varphi\sin\theta &
r\sin\varphi\cos\theta\\ \cos\varphi & -r\sin\varphi & 0\\ \end{matrix}\right|=r"2\sin \varphi$$

gobogoo

googd

$$\begin{cases} x=ar\sin \varphi \cos \theta,\\ y=br\sin \varphi \sin \theta,\\ z=cr\cos \varphi.
\end{cases}$$
Jacobian D O OO

$$)=\frac{\partial(x, y, z)} {\partial(r, \varphi, \theta)} =abcr”2\sin \varphi$$
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gooo

HEN

$z=z(x, y), (x, y\in D$

ugd

$F(x, y, 2)=0, (x,y, Z\in V$
0000 $F,Fx, Fy,Fz$0O$v$ 0000

gobogobbooobobooonoo

good

0 $\Deltas O suv$ 000 0ODOOOOOODO

$\Sigma: \vec{r}=\vec{r}(u, v), (u, v)\in \Delta$

oooooooooono $\wec{r}(u, viin \mathbb{R}"~3$[]

00 $\ec{r}=(x,y,2)$00 $()$0 OO OO

$$\begin{cases} x=x(u, v)\\ y=y(u, v)\\ z=z(u, v) \end{cases}, \quad (u, v)\in \Delta $$

goooooooooao

gogg

0 O00$z=f(x, y), (x, yNinD$J00 $D$ 0000000000000, y)$ 0 $D$ 00000000
g

$$S=\iint\limits_{DH\sqrt{1+f x*2+f y~2}\mathrm{d}x\mathrm{d}y$$

O 0O0%$x(u, v), y(u, v), z(u, v),\; (u, vNinD$$DS DO D OJ%x,y,z$ 0 $D$ 00D OO OO
O 0$\frac{\partial(x,y)} {\partial(u,v)} \frac{\partial(y,z) } {\partial(u,v)} \frac{\partial(z,x) } {\partial(u,v)} $
000000ooooooog $ssoooa

$$\varDelta S=\iint\limits_{D}\sqrt{ EG-F~2}\mathrm{d}u\mathrm{d}v,$$
$$E=x U™2+y U™24+z Uu™2,$%

$$F=X_ux_v+y uy v+z uz_v,$$
$$G=x V"2+y V"24+z v"2.$%
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oooogo?d

ud

good

$$ \bar{x}=\frac{\iint\limits_{D}x\rho(x, y)\mathrm{d}\sigma} {\iint\limits_{D}\rho(x,
y)\mathrm{d}\sigma}, \bar{y}=\frac{\iint\limits_{D}y\rho(x,
y)\mathrm{d}\sigma}{\iint\limits_{D}\rho(x, y)\mathrm{d}\sigma} $$

good

$$ \bar{x}=\frac{\iiint\limits_{V}x\rho(x, y,

z)\mathrm{d}x\mathrm{d}y\mathrm{d}z} {\iiint\limits_{V}\rho(x, vy,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z},$$ $$\bar{y}=\frac{\iiint\limits_{V}y\rho(x, vy,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z} {\iiint\limits_{V}\rho(x, y,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z},$$ $$\bar{z}=\frac{\iiint\limits_{V}z\rho(x, v,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z} {\iiint\limits_{V}\rho(x, vy,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z} $$

gooo

$$)=\iiint\limits_{V}r~2(x, y, z)\rho(x ,y, z)\mathrm{d}x\mathrm{d}y\mathrm{d}z$$

gd

OO0 $A(\xi, \eta, \zeta)$

$$ F=F x\vec{i}+F y\vec{j}+F z\vec{k}$$ $$F x=k\iiint\limits_{V}\frac{x-\xi} {r~3}\rho(x, y,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z,$$ $$F y=k\iiint\limits_{V}\frac{y-\eta}{r~3}\rho(x, vy,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z,$$ $$F z=Kk\iiint\limits_{V}\frac{z-\zeta}{r~3}\rho(x, y,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z, $$ $$r=\sqrt{(x-\xi)~2+(y-\eta)~2+(z-\zeta) 2} $$

1o

1710o0o00gon

gd

$L$ 00000000000 $f(x,y)$03$L$ 00000 $L$0OO0O $L$SOOO0OOO

CVBB ACM Team - https://wiki.cvbbacm.com/



Last
update:
2020/05/08
11:45

$$\lim\limits_{\max \varDelta s_i\to 0}\sum\limits_{i=1}"~{n}f(\xi_i, \eta_i)\cdot\varDelta s i = A$$

2020-2021:teams:mian:pantw:real_analysis https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:mian:pantw:real_analysis&rev=1588909521

0O$A$0000000000000000000000 $fix,y)$0$L$00000 $A$000 $f(x,
y)$ 0000 $$000000000000000000000

$$\int_L f(x, y) \mathrm{d}s$$
oooooooo0o0oo0oo

$$\int_L f(x, y, z) \mathrm{d}s$$

gooo

$f(x, y)$ 000000 $L$ 000000000000 $\int Lf(x, y)\mathrm{d}s$ 00O

gd

goo

$$\int_ L \sum c_if i\mathrm{d}s = \sum c_i\int L f \mathrm{d}s$$

gogg

$$\int_L Aimathrm{d}s=\sum\int_{L i}f\mathrm{d}s$$

gd

$L$00000000 $fix,y)$0$L$ 00000000000

$$\oint\limits_L f(x, y)\mathrm{d}s$$

HEN

00000 $L: \begin{cases}x=\varphi(t),\\y=\psi(t),\end{cases}\;t\in[\alpha, \beta]$($f(x, y)$ O $L$

gogoooooon

$$\int_L f(x,y)\mathrm{d}s = \int \alpha”™\beta f[\varphi(t),
\psi(t)\sqrt{\varphi'~ {2} (t)+\psi'~ {\,2} (t) \mathrm{d}t$$

1720000000
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gd

$L$ 000000 $A$0 $B$S 000D 0DO0OODOODOO $P(x,y), Qx, y)$ 0 $L$0 00O OO $L$
00000 $T$j0 00000 $\warDeltas i$00 0000 $\|T\|=\max\limits_{1\le i\le n}\varDelta
s i$00 O $(\xi_i, \eta_i)\in \overline{M _{i-1}M i}$00 0 O

$$\lim\limits_{\|T\|\to 0} \sum\limits_{i=1}"~{n}P(\xi_i, \eta_i)\varDelta x_i + \lim\limits_{\|T\|\to
ORNsum\limits_{i=1}"{n}Q(\xi_i,\eta_i)\varDelta y_i$$

0000000 $T$0 $(\ii\eta )$ 00000000000 $P(x,y), Qlx,y)$ 00000 $L$ 00
00000000000

$$\int_L P(x, y\mathrm{d}x + Q(x, y\mathrm{d}y$$

O

$$\int_{AB} P(x, y)\mathrm{d}x + Q(x, y)\mathrm{d}y$$
0

$$\int_L P(x, y)\mathrm{d}x + \int_L Q(x, y)\mathrm{d}y$$
gon

$$\int_L P\mathrm{d}x+Q\mathrm{d}y$$

00 $s00000DO0O0O0O0ODOO

$$\oint_L P\mathrm{d}x+Q\mathrm{d}y$$

O $\vec{F}=P\vec{i}+Q\vec{j}, \mathrm{d}\vec{s}=\mathrm{d}x\vec{i}+\mathrm{d}y\vec{j}$
googod

$$\int_L \vec{F}\cdot\mathrm{d}\vec{s}$$

goon

$P,Q$ 00000000 LS D00 DO0DOO00ODO0O0ODOD0OO

gd

$$\int \Gamma P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z$$

gd

aoo

$$\int_L \left(\sum c_iP_i\right)\mathrm{d}x+\left(\sum c_iQ_i\right)\mathrm{d}y = \sum c_i

CVBB ACM Team - https://wiki.cvbbacm.com/



Last
update:
2020/05/08
11:45

2020-2021:teams:mian:pantw:real_analysis https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:mian:pantw:real_analysis&rev=1588909521

\left(\int_L P_i\mathrm{d}x+\int_L Q_i\mathrm{d}y\right)$$

gobogond

$$\int_L P\mathrm{d}x+Q\mathrm{d}y = \sum\int_{L i} P\mathrm{d}x+Q\mathrm{d}y$$

goo

$$\int_{-L}P\mathrm{d}x+Q\mathrm{d}y=-\int_L P\mathrm{d}x+Q\mathrm{d}y$$

gd

00000 $L: \begin{cases}x=\varphi(t),\\y=\psi(t),\end{cases}\;t\in[\alpha, \betal$[JO O $t$ O O
00 $\alpha$ 00O $\betas 00O $M(x, y)$ O $A$ O O $B$O$\varphi, \psi$ O $[\alpha, \betal$ O O
O000000%f(x,y)$03$L$00000000000000O00 $\int L
P\mathrm{d}x+Q\mathrm{d}y$ O OO O

$$ \int_| P\mathrm{d}x+Q\mathrm{d}y =\int_{\alpha} " {\beta} \left(P(\varphi(t),
\psi(t))\varphi'(t)+Q(\varphi(t), \psi(t))\psi'(t)\right \mathrm{d}t $$

gd

$$\int_{L} P\mathrm{d}x+Q\mathrm{d}y = \int_{L} (P\cos\alpha + Q\cos\beta)\mathrm{d}s $$

gd

gobogobbooobooobbooobobuooooboon

1730000

7310000000000 onon

0¢$D$0000000000000O0O0O $D$J0DO $D$S DD OO0 O0ODOODOO0OOODOOOOD
googd

$D$ 0000000000 D0ODO00O0O0DODOO $Ds 0000 ODOOO

gooodad

17.3.2 Green 0 [0
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g

0000 4$D$ 00000000 S 00000 $P(x,y),Qx,y)$0 ¢$D$ 0 OO0 O0OO0ODOOOO

$$ \iint\limits_{D}\left(\frac{\partial Q} {\partial x} - \frac{\partial P} {\partial
yHright)\mathrm{d}x\mathrm{d}y = \oint_{L} P\mathrm{d}x + Q\mathrm{d}y $$

OO0 $Ls0O $D$SO0ODO000ODOOOOO

googod

aoo

$$ \iint\limits_{D}\frac{\partial Q}{\partial x}\mathrm{d}x\mathrm{d}y = \oint L
Q\mathrm{d}y\text{JY O O O O [J}$$ $$-\iint\limits_{D}\frac{\partial P} {\partial
yHmathrm{d}x\mathrm{d}y = \oint_L P\mathrm{d}x\text{X OO O O O} $$

HEN

goboogobbooobobooonooog
dobooobbooobboooboo
gooodad

$$ \iint\limits_{D}\left|\begin{matrix} \frac{\partial} {\partial x} & \frac{\partial} {\partial y}\\ P & Q
\end{matrix}\right|\mathrm{d}x\mathrm{d}y= \oint\limits_{L}P\mathrm{d}x+Q\mathrm{d}y $$

173300

O¢s000000DO0O0O0O0ODOO

O¢$$ 00000 $D$JOOOO0OODODOO

3400000 gooaoon

HEN

$D$SU0DODO$P,Q$ 0 $DS L LD OOLOLOOOODOD $D$ 0000 DOO0O $A,B$OOO $DS O
0$A$0 $B$000D0DOD0O0 $L1,L 23000

$\int_{L 1}P\mathrm{d}x+Q\mathrm{d}y=\int_{L 2}P\mathrm{d}x+Q\mathrm{d}y$J0 0O 000
$\int_L P\mathrm{d}x+Q\mathrm{d}y$ 0 $D$ 00000 OO

ugd

$D$ 00 00D0DOD0D0 $P(x,y)$0 $Q(x, y)$ 0 $D$ 0000 000000000000 OO0N
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1.0$D$ 00000000 0OO0O $L$00 $\oint L P\mathrm{d}x+Q\mathrm{d}y = 0%
2. 0 $D$ O $\int_ L P\mathrm{d}x+Q\mathrm{d}y$ 0O 00 OO

3. 0 $D$ 000 $u(x, y)$00 O $\mathrm{d}u=P\mathrm{d}x+Q\mathrm{d}ys$[

4. 0 $D$ O O $\frac{\partial P}{\partial y}\equiv \frac{\partial Q} {\partial x}$[]
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gooog

000 $u(x, y)$g0 O $\mathrm{d}u=P\mathrm{d}x+Q\mathrm{d}y$00 O
$P\mathrm{d}x+Q\mathrm{d}y=0$ 00000 0O O

O $P(x,y)$0 $Q(x,y)$ 000000 $DS 00D OOODODODOO

OO000000 $\iff \frac{\partial P} {\partial y}=\frac{\partial Q} {\partial x}$

1800

1810000000

gd

1. 00 $z=z(xy), (x, y)\in D$

2. 00 $F(x,y,2)=0, (x,y,zZ\inV$JODOODO $F, Fx, Fy, Fz$DO $v$ OO OO

3. 00O $\mathit{\Sigma}: \vec{r}=\vec{r}(u, v), (u, v)\in \varDelta$J$\vec{r}(u, v)\in
\mathbb{R}~34$00 O

$$ \begin{cases} x=x(u, v),\\ y=y(u, v),\\ z=z(u, v),\\ \end{cases} \quad (u, v)\in \varDelta. $$
HRE

$$ z=f(x, y), \, S = \iint\limits_{D}\sqrt{1+f~2 x+f*2_yHmathrm{d}x\mathrm{d}y $$
oogdoo
$$ \begin{cases} x=x(u, v),\\ y=y(u, v),\\ z=z(u, v),\\ \end{cases} \quad (u, v)\in D. $$

$x,y,z2$00000 $D$ 0000000000 $\frac{\partial(x, y)}{\partial(u,v)}, \frac{\partial(y,
z)}{\partial(u,v)}, \frac{\partial(z, x)}{\partial(u,v)}$ OO0 000000000 $S$ 0000

$$ \Delta S=\iint\limits_{D}\sqrt{EG-F~2}\mathrm{d}u\mathrm{d}v, \,$$
$$E=X U™2+y U™2+z U2, F=x_ux v+y uy v+z uz v, G=X v"2+y v*2+z v~2. $%

$\sqrt{EG-F~2}$ 00 0O0O0O0O0ODODO
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gd

$$ \iint\limits_{\Sigma}f(x, y, z)\mathrm{d}S=\lim\limits_{\|T\|\to O}\sum\limits_{i=1}"{n}

f(\xi_i,\eta_i, \zeta i)\varDelta S i $$

gd

$\Sigmas 0000000000 $\wvec{r}=\vec{v}(u, v), (uv)\in\varDelta$[]
00 $f(x,y,2)$0 $\Sigmas 000000

$$ \iint\limits_{\Sigma}f(x, y,
z)\mathrm{d}S=\iint\limits_{\varDelta}f\circ\vec{r}\left\|\vec{r}_u\times
\vec{r} v\right\\mathrm{d}u\mathrm{d}v $$

$z=g(x, y), f$ O $\Sigmas 00 OO

$$ \iint\limits_{\Sigma}f(x, y, z)\mathrm{d}S=\iint\limits_{\varDelta}f(x, y,
z\sqrt{1+g x"2+g_y~2}\mathrm{d}u\mathrm{d}v $$

20000000

O0ooooooooooooo
0000000 $\varDelta\varPhi=\vec{v}\cdot\vec{n}\varDelta A$
Oagd $\vec{v}$

Oooag $\wvec{n}$

ud

$$ \iint\limits_S P\mathrm{d}y\mathrm{d}z+\iint\limits_S Q\mathrm{d}z\mathrm{d}x+\iint\limits_S

R\mathrm{d}x\mathrm{d}y=$$ $$\lim\limits_{\|T\|\to

ORNsum\limits_{i=1}"~{n}P(\xi_i,\eta_i,\zeta_i)\varDelta S_{i_{yz}}+\lim\limits_{\|T\|\to
ORNsum\limits_{i=1}"{n}Q(\xi_i,\eta_i,\zeta_i)\varDelta S_{i_{zx}}+\lim\limits_{\|T\|\to

OHsum\limits_{i=1}"{n}R(\xi_i,\eta_i,\zeta i)\varDelta S {i {xy}} $$

gd

$S\colon x=x(y, z),$

$$\iint\limits_S P(x, y, z)\mathrm{d}y\mathrm{d}z=\pmiiint\limits_{D {yz} }P[x(y, 2), v,

z\mathrm{d}y\mathrm{d}z$$
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$z=2(x, y), (x, y\in D$

$\cos\alpha = \frac{\mp z_ x}{\sqrt{1+z x~24+z y~2}}.$
$\cos\beta = \frac{\mp z_y}{\sqrt{1+z_x"~2+z_y~2}},$
$\cos\gamma = \frac{\pm 1}{\sqrt{l+z x~2+z y"~2}}.%

$$

\iint\limits_{S}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}
y =\iint\limits_{S}(P\cos\alpha+Q\cos\beta+R\cos\gamma)\mathrm{d}S $$

goooon

$\vec{r}=\vec{r}(u, v), (u, v)\in \Delta$
$\vec{F}=(P, Q, R)$[]0 $S$ 0 O O

$$
\iint\limits_{S}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}
y =\pm

\iint\limits_{\varDelta}\vec{F}\circ\vec{r}\cdot(\vec{r} u\times\vec{r} v)\mathrm{d}u\mathrm{d}v
$$

18.3 Gauss [ [0 [0 Stokes [0 [J

Gauss [0 [

00000 $v$s 000000 00ooOoOono $S$s00onon $p,QR$OSVSIDDOODOODODODOO
good

$$ \iiint\limits_{V}\left(\frac{\partial P} {\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial
R}{\partial
zHright)\mathrm{d}x\mathrm{d}y\mathrm{d}z=\oiint\limits_{S}P\mathrm{d}y\mathrm{d}z+Q\ma
thrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y $$

00 $Ss 000000000000
guoooobobboogooad
gobooobobooobooobboooboobda
guoooon

$S$ 0000000000000 $\Gamma$s O OO OOODOOOOODOOD $P,Q,R$ O $S$00 DO
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$\Gamma$[0 OO D ODODODDDOOOODOOOO

$$ \iint\limits_{S} \left(\frac{\partial R} {\partial y}-\frac{\partial Q} {\partial
zHright)\mathrm{d}y\mathrm{d}z +\left(\frac{\partial P} {\partial z}-\frac{\partial R} {\partial
xHright)\mathrm{d}z\mathrm{d}x +\left(\frac{\partial Q} {\partial x}-\frac{\partial P} {\partial
yHright)\mathrm{d}x\mathrm{d}y$$ $$=\oint\limits_{\Gamma}
P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z $$

gooog

$$ \iint\limits_S \left|\begin{matrix} \mathrm{d}y\mathrm{d}z & \mathrm{d}z\mathrm{d}x &
\mathrm{d}x\mathrm{d}y \\\,\\ \frac{\partial} {\partial x} & \frac{\partial}{\partial y} &
\frac{\partial} {\partial z} \\\\\ P & Q & R \end{matrix}\right| =\oint\limits_{\Gamma}
P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z $$

1840 01

gd

oooo
$f(x, y, 2)$

0000
$\vec{F}(x, y, z2)=(P(x, y, 2), Q(x, y, 2), R(X, y, 2))$

goad

$V\subset\imathbb{R}"~3$ 0000000 $f$ 00000

$$\mathrm{grad}\,f(\vec{p} 0) = \frac{\partial f(\vec{p} _0)} {\partial x}\vec{i}+\frac{\partial
f(\vec{p}_0)}{\partial y}\vec{j}+\frac{\partial f(\vec{p}_0)}{\partial z}\vec{k}$$

gboboogobooboooooo

Nabla O O

$$ \nabla = (\frac{\partial} {\partial x}, \frac{\partial} {\partial y}, \frac{\partial} {\partial z}) $$

1. $\nabla (cf)=c\nabla f$

2. $\nabla(f\pm g)=\nabla f\pm \nabla g$

3. $\nabla(fg)=f\nabla g+g\nabla f$

4. $\nabla(\varphi\circ f)=(\varphi' \circ f)\nabla f$

god

CVBB ACM Team - https://wiki.cvbbacm.com/



Last
update:
2020/05/08
11:45

$\vec{F}(x,y, 2)=(P(x,y,2),Q(x,y,2),R(x,y,2)$ 00000 $v$ 00D OODOOOOOOOO

2020-2021:teams:mian:pantw:real_analysis https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:mian:pantw:real_analysis&rev=1588909521

$$D(x, y, z)=\frac{\partial P} {\partial x}+\frac{\partial Q} {\partial y}+\frac{\partial R} {\partial z}$$
000000 $\wec{F}$ 0 $(x,y,2)$ 0000000 $\mathrm{div}\;\vec{F}$[
oooooooa

$$ \iiint\limits_{VH\mathrm{div}\;\vec{F}\mathrm{d}x\mathrm{d}y\mathrm{d}z=\oiint\limits_S
\vec{F}\cdot\mathrm{d}\vec{S} $$

00000000 $M 0$ 0000000 $\mathrm{divi\\vec{F}(M 0)$ 000000 $v$ 00O ODOO
$\mathrm{div}\;\vec{F}(M 0)>0$00 0 0 0 00O

$\mathrm{div}\;\vec{F}(M 0)<0$00 0 00 0O 0O

O $\forall P\in V, \mathrm{div}\;\vec{F}(P)=0$00 $\vec{F}$ 00O 00O

00000 $\mathrm{div}\; \vec{F}=\nabla\cdot\vec{F}$

oo

1. 000

2. $\nabla \cdot\varphi \vec{F}=\varphi \nabla \cdot \vec{F} +\vec{F }\cdot\nabla\varphi$

3. $\varphi$ 0 O 0O O OO $\nabla\cdot\nabla\varphi=\frac{\partial~2\varphi} {\partial
x~2}+\frac{\partial~2\varphi} {\partial y~2}+\frac{\partial~2\varphi} {\partial z*~2}$

O $\nabla\cdot\nabla=\varDelta$(J0 Laplace O O O
0000 $f$ 00 Laplace O O JLaplacian?

$$ \varDelta f=\frac{\partial~2 f} {\partial x~2}+\frac{\partial~2 f} {\partial y~2} +\frac{\partial~2
f}{\partial z~2} =0 $$

OO0 $f$0 svs0000DO0ODO

goad

$\vec{F}(x,y,2)=(P(x,y,2),Q(x,y,2),R(x,y,2)$ 00000 $v$ 0000 O0DOOOOOOOOOO

$$ \mathrm{rot} \vec{F} = (\frac{\partial R} {\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial
P}{\partial z} - \frac{\partial R} {\partial x}, \frac{\partial Q} {\partial x} - \frac{\partial P}{\partial y})
$$

000000 $\wec{F}$0 $(x,y,2)$ 00 0000000000000
goo

$$ \mathrm{rot} =\left|\begin{matrix} \vec{i} & \vec{j} & \vec{k} \\\\ \frac{\partial}{\partial x} &
\frac{\partial} {\partial y} & \frac{\partial} {\partial z} \W\\ P & Q & R \end{matrix}\right| $$
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gggd

$$ \mathrm{rot}\, \vec{F} = \nabla \times \vec{F} $$

gobooooooogad

$$ \iint\limits_S \mathrm{rot}\,\vec{F}\cdot\mathrm{d}\vec{S} = \oint\limits \Gamma
\vec{F}\cdot\mathrm{d}\vec{s} $$

O

00 $\arphi$ O 0O $\mathrm{grad}\\varphi=\vec{F}$J0 0000 $\ec{F}$ 000 OO

000 $v$0 000000 $\Gammas$\oint\limits_{\Gamma}\vec{F}\cdot\mathrm{d}\vec{s} = 0$[]
00 $\wec{F}$0 $v$ 00D DODDODODO

00 $\mathrm{rot}\,\vec{F}\equiv \vec{0}$00 0 $\wec{F}$ 0 $v$ 00O DO OO OO

gobogoood

guoooobbogogd

good

O¢$v$ 0000000000000 $v$00OO00DO0ODO00O$VSOODoooo $vsooooooo
goboouoobobboobboooboon

goodd

$\Omega\subset\mathbb{R}"*3$ OO O OO OO$P, Q,R$ 0 $\Omegas 0 D D DD OO ODOOOOOO
goboooboo

1. 00000Dooooo0o swesgs\oint\limits {L}YP\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z
= 0%

2. $\Omega$ O $\int\limits_{L}P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z$ OO O OO

3. $\exists u(x, y, 2),
\mathrm{s.t.}\;(\mathrm{d}u=P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z)$

4. $\frac{\partial P} {\partial y}\equiv\frac{\partial Q} {\partial x}\; \frac{\partial Q} {\partial
zH\equiv\frac{\partial R} {\partial y} \;\frac{\partial R} {\partial x}\equiv \frac{\partial
P}{\partial z}$
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