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Jooodooag

110000

11.1000dogon

11200000000

guoooobbboooodod
guooooon

$x\gegslant 1, f(x)\gegslant 0, f(x)$ O O $\Rightarrow \sum\limits_{n=1}"~{\infty }f(x)$ O
$\int {1}~ {+\infty}(x)\mathrm{d}x$ O OO

guoooobboooooobooobod

o $(\exists \ 0<qg<1, N \in \mathbb{N}"{\ast},s.t. \ n>N \Rightarrow \sgrt[n]{a n}\leq < 1)
\Rightarrow \sum\limits_{n=1}"~{\infty} a n$ O O

o $(\forall N \in \mathbb{N} ~{\ast}, \exists n > N, s.t. \\sqrt[n]{a_n}\ge 1) \Rightarrow
\sum\limits_{n=1}"{\infty} a n$ OO

o $a _n\ge 0, (\lim\limits_{n\to \infty }\sgrt[nl{a_n}=q)\vee (\lim\limits_{n\to
\infty N\sup\sqrt[nl{a_n}=q)$00

o $q < 1 \Rightarrow$ O

o $g > 1 \Rightarrow$ 0

gooooobbooon

e 3an>0bn>0,\exists n 0, (n\ge n_0\Rightarrow \frac{a_{n+1}}{a n}\le
\frac{b_{n+1}}{b n})$00 $\sum b$ O $\Rightarrow \sum a$ O O $\sum a$ O $\Rightarrow
\sum b$ O

e $a n>0%

1. $(\exists\ 0<g<1,n_0\in \mathbb{N} "~ {\ast}, \mathrm{s.t.}\ n\ge n_0 \Rightarrow
\frac{a_{n+1}}{a_n}\le g < 1) \Rightarrow \sum a$ 00 O
2. $(\exists\ n_0\in \mathbb{N}~{\ast}, \mathrm{s.t.}\ n\ge n_0 \Rightarrow
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\frac{a_{n+1}}{a n}\ge 1) \Rightarrow \sum a$ O O
e $\lim\limits_{n\to \infty} \frac{a_{n+1}}{a n} = q$
1. $g<1\Rightarrow \sum a$ O
2. $g > 1 \Rightarrow \sum a$ O
e S\lim\limits_{n\to \infty} \sup \frac{a_{n+1}}{a n} = q < 1 \Rightarrow \sum a$ O
e S\lim\limits_{n\to \infty} \inf \frac{a_{n+1}}{a n} = q > 1 \Rightarrow \sum a$ O

goooobbibn

1. $a n>0%
o $\exists\r > 1, N_O\in \mathbb{N}~{\ast}$, 0 $n >N 0$ 0O O
$n(\frac{a_n}{a_{n+1}}-1)\ger > 1%, O $\sum a$ O
o $\exists\ N_O\in \mathbb{N}~{\ast}$, 0 $n >N _0$ OO 0O $n(\frac{a_n}{a_{n+1}}-1)\le
14, 0 $\suma$ O
2. $a_n> 0, \frac{a_n}{a_{n+1}}=1+\frac{I}{n}+o(\frac{1}{n}) \quad (n\to \infty)$ O
$\lim\limits_{n\to \infty} n(\frac{a_n}{a_{n+1}}-1) = I1$00
o $I>1 \Rightarrow \sum a$ O
o $l<1 \Rightarrow \sum a$ O

13000gooon

gooooboo

0000 $\sum\limits {n=1}"~{\infty} (-1)~{n-1}a n\a n>0$00 $\{fa M\}$ DO OO $0$C 00O 0O
OO

gooooo

$\displaystyle\{a_n\}, \{b_n\}$ O O O O g$\forall n\in \mathbb{N} " {\star},

S_k=\sum\limits {i=1}"{k}a i, S 0 = 0%$7J0
$\sum\limits_{k=1}"{n}a_kb_k=\sum\limits_{k=1}"{n-1}S _k(b_k-b_{k+1})+S nb_n$ \displaystyle
qQOo0o0o0oo0oooooon

$\displaystyle\int S\mathrm{d}T = ST - \int T\mathrm{d}S$
0 $a n$ 00 $\mathrm{d}S$0%$b n$ O O $T$0$\sum ab = \int T\mathrm{d}S=ST-\int S\mathrm{d}
T = b\sum a + \sum (\sum a)(b_k-b_{k+1})$

gooog

$\displaystyle\{b_n\}$ O O [O$\left|\sum a\right|\le M$00 $[\sum\limits_{k=1}"~{n}a kb k|\le
M(|b_1|+2|b_n|)$.
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guooooon

$\displaystyle\{b n\}$ 000 00O $0$0$\sum a$ 0O O $\Rightarrow \sum\limits_{k=1}"{\infty}
a kb k$OO.

goooon

$\displaystyle\{b_n\}$ O 0 O O J%$\sum a$ O O $\Rightarrow \sum\limits_{k=1}"~{\infty} a_kb k$ O
a.

114000000000

goog

$\displaystyle\mathbf{Th.\; 11.4.1}$
oo ooouuooo
oo go

$\displaystyle\mathbf{Th.\; 11.4.2}$
g UUUU U
$\displaystyle\mathbf{Th.\; 11.4.3}\;\;\text{Riemann 00 O O }$

oo oooon
gooo

$\displaystyle\mathbf{Def. }\;\;\text{Cauchy O O }$

$\displaystyle\sum\limits_{n=1}"{\infty}c_n = \sum\limits_{n=1}"{\infty}
(x_1y n+x_2y_{n-1}+\cdots+x_ny 1)$

0000 $\sum x$ O $\sum y$ O Cauchy OO O
$\displaystyle\mathbf{Th.\; 11.4.3}\;\;\text{Cauchy O O }$

gbobogoboodbbooobooobobooobooon

1200000

121000
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$\displaystyle\forall x_0\in 1$00 $\{f n(x ON}$ O OO $f(x 0)$00 O $\{f n(x)\}$ O $Is 00D O0O.

gooo

$\displaystyle\forall\ \varepsilon > 0, \exists N(\varepsilon) > 0$[J00 $n>N(\varepsilon)$ 00 O $\forall
X\in 1$00 $|f_n(x)-f(x)|<\varepsilon$ OO0 0D 00000 $\M{f n(x\}$ 0 $I$O000 000 $f(x)$00 O
$f n(x)\stackrel{uni}{\longrightarrow} f(x)$.

1220000000

gooo

$\displaystyle\lim\limits_{n\to \infty} \sup\limits_{x\in I} |[f_n(x)-f(x)| = O \iff
f n(x)\stackrel{uni}{\longrightarrow} f(x)\quad (n \in \mathbb{N} ~{\star})$

goooon

$\displaystyle\forall x_0\in I, \forall \varepsilon > 0, \exists N(x_0, \varepsilon) \in

\mathbb{N} ~{\star}, \forall n > N, \forall p \in \mathbb{N}~{\star}: |f n(x 0) - f {n+p}(x 0)| <
\varepsilon \iff \{f n(x)\}$ O $I$ 00000,

$\displaystyle\forall \varepsilon > 0, \exists N( \varepsilon) \in \mathbb{N} ~{\star}, \forall n > N,

\forall p \in \mathbb{N} ~{\star} \forall x \in I: |f_n(x) - f_{n+p}(x)| < \varepsilon \iff \{f_n(x)\}$ O $I$
ooooao.

O00000O[Weierstrass[J 0 O[M OO OOOOOOOO

0000000000 $\suma_n$gd O $\forall x\in 1$00 O $Ju_n(x)|\le a_n$00 $\sum u_n(x)$ O $I$
goooad.

guooooon

$$\sum\limits_{n=13}"{\infty}a_n(x)b_n(x)$$

OO0 s$isoo

$\displaystyle\{b n(x\}$ DO OO $x$ 0000 D000 $08.
$\displaystyle\sum\limits_{n=1}"{N}a n(x)$ 0 $I$ 0000 0O.

0 $\sum\limits_{n=1}"{\infty}a n(x)b n(x)$ O $I$ O OOOO.
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goooon

$$\sum\limits_{n=1}"{\infty}a_n(x)b_n(x)$$

OO0 $l$00

$\displaystyle\{b n(x)\}$ OO OO $x$ 0000 $Is 00000,
$\displaystyle\sum\limits_{n=1}"{\infty}a_n(x)$ O $I$ 0O OO DO.

O $\sum\limits_{n=1}"{\infty}a n(x)b n(x)$ O $I$ 00O O O.

1230000/00000

god

$f n(x)$ O $I$ O O O J%$f_n(x)\stackrel{uni}{\longrightarrow}f(x)$0C $f(x)$ O $I1$ 0O O.

$\displaystyle\sum\limits_ {n=1}"{\inftylu n(x)$ O $I1$ 000000 $S(x)$00 $u_n(x)\in C_{I}
\Rightarrow S_n(x)\in C_{I}$

Dini O O

$\displaystyle\{f n(x)\}\in C[a,b]$00 00000 $x\in [a, bI$0$\lim\limits_{n\to
\infty}f n(x)=0$$f n(x)$ DO 00O $\{f n(x\}$ 00000 $0$0

$\displaystyle\{f n(x)\}in C[a,b]$J0 000 $f(x)$00 00000 $x\in [a, b]$0$f n(x)$ OO O O
$\M{f_ n(x)\}$ 0 $[a,bl$ 000000 $f(x)$0

$\displaystyle\sum\limits_{n=1}"{\infty}u n(x), u_n(x)\in C[a,b], u_n(x)\ge 0.$ O $S(x) \in C[a,b]$[0O
$\sum\limits_{n=1}"~{\infty}u n(x)$ O $[a, bl$ 000 OO0

00

$\displaystyle\{f_n\}\in R[a,b]$[$f _n(x)\stackrel{uni}{\longrightarrow} f(x)$0C $f\in R[a, b]$ O
$\lim\limits_{n\to \infty N\int_{a} "~ {b}f n(x)\mathrm{d}x=\int_{a} "~ {b}f(x)\mathrm{d}x$
goodooooodoon

$\displaystyle\sum\limits_{n=1}"~{\infty}u_n(x \stackrel{unl}{\Iongrlghtarrow}S _n(x)\in R[a,b]$[]
O $S(x)\in R[a,b], \int_{a}~{b}(\sum\limits_{n=1}"~{\infty}u_n(x \mathrm{d}x =
\sum\limits_{n=1}"{\infty N\int_{a} "~ {b}u_n(x)\mathrm{d}x$

gd

$f n™{'}in C[a,b], f n™{'}\stackrel{uni}{\longrightarrow}g(x), \exists x_0\in[a, b], \{f n(x 0)\}$ oo
$\Rightarrow \{f n(x)\}$ O $[a,b]$ 00 DO OO O $f(x)$00 O $\forall x \in [a,b], f~{"'}(x xX)$[]0
$\lim f n]~{'} =\lim [f n~{'}]$
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124000

$\displaystyle\sum\limits_{n=0}"{\infty}a_n(x-x_0)"n$

$\displaystyle\sum\limits_{n=0}"{\infty}a_nx"~n$

goad

Abel O O
$\displaystyle\sum\limits_{n=0} " {\infty}a _nx~n$
00 $x 0\neq0$ 00000000 $|x|<[x0]$00000

00 $x 1\neq0$ 00000000 $|x|>x 1$ 000

goon

$R\in [0, +\infty)$

goodgdgo

$R = \frac{1}{\lim\limits_{n\to \infty \sqrt[n]{|a_n|}} = \lim\limits_{n\to
\infty}|\frac{a_n}{a_{n+1}}|$

goog

$\displaystyle\sum a_nx~n: R_a,\; \sum b_nx~n: R_b,\; R=\min\{R a, R b\}.$ O O
$\displaystyle\sum(a_n\pm b_n)x"~n =\sum a_nx~n\pm \sum b nx~n$ 0 $(-R,R)$ 0O OO

$\displaystyle\sum a_ nx"™n,\sumb nx*n$ 0O 00O $(-R,R)$ 000 OO0

guooooon

$\displaystyle\forall [L, K] \subset (-R, R)$[0$\sum a nx~n$ O $[L,K]$ OO DO D OO
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goog

Abel DO OO

$\displaystyle\lim\limits_{x\to R~ {-}} \sum\limits_{n=0}"{\infty} a_nx"n =
\sum\limits_{n=0}"{\infty} a nR*n$ JO O OO

$\displaystyle\lim\limits_{x\to (-R)~{+}} \sum\limits_{n=0}"~{\infty} a_nx"n =
\sum\limits_{n=0}"{\infty} a n(-R)*n$ 00 O OO

EEERERN

$S(x)=\sum a_nx"n: R, \quad S(x)\in C(-R, R)$[$S(x)$ O $(-R,R)$ 0000 DODODOOO

$S™{ (k) }(x)=\sum\limits_{n=k} ™~ {\infty} n(n-1)\cdots(n-k+1)a_nx"{n-
k}=\sum\limits_{n=k} ™~ {\infty} n~{\underline{k}}a_nx~{n-k}$

gdodouooooogg

googgd

$S(XN\inR(-r,N$Q0 000 O0ODOO0O $\forall x\in (-R,R)$ O

$\displaystyle\int_{0} ~{x}S(t)\mathrm{d}t=\sum\limits_{n=0}"{\infty}\int_ {0} ~{x}a_nt”~n\mathr
m{d}t=\sum\limits_{n=0}"~{\infty\frac{a_n}{n+1}x~{n+1}$

gogoooogao

gd

$f(x)=\sum\limits_{n=0} " {\infty }\frac{f~ {(n)}(x_0)}{n!'}(x-x_0)"n, \quad x\in (x_0-R,x 0+R)$
$fs 00000000 $FNff \lim\limits_{n\to \infty}R_n(x)=0, \forall x\in U(x_0, R)$

$fs 00000000 $f\Leftarrow [f~{(n)}(x)|\le M, \forall n\in \mathbb{N} " {\star}, \forall x\in
U(x_0, R)$00 $\{f~{(n)}(x)\}$ O $(x 0-Rx 0+R)$ OO OO

0

gobsoboooobobood

$f(x)=\frac{1}{1-
x-2x"2}=\frac{1}{3}(\frac{1} {1+x}+\frac{2} {1-2x})=\frac{1} {3} \sum\limits_{n=0}~{\infty}(-1)
~“nx™n + \frac{2} {3} \sum\limits_{n=0}~{\infty}2~nx"n$
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ud

gooogooo

gooogooog .

gobogond

13 Fourier (1 [J

$y=A_0 + \sum\limits_{n=1}"{\infty}A_n\sin(n\omega t+\varphi_n)$

13.000000 Fourier ([

‘g0 ooggogagr

gooo

$y=\frac{a_0}{2} + \sum\limits_{n=1}"{\infty}(a_n\cos nx+b_n\sin nx)$
goooooooon

goodd

$1, \cos x, \sin x, \cos 2x, \sin 2x, \ldots$

g

00000000000 $[-\pi,\pil$ 00000 $08.
oo0oooooooa
$\displaystyle\int_{-\pi} ™~ {\pi} \sin mx \sin nx \mathrm{d}x = \pi \delta_{mn}=\begin{cases}0,

m\neq n\\\pi, m=n\end{cases}$

gooog
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googd

$\displaystyle\int_{-\pi} "~ {\pi}f(x)\mathrm{d}x = \int_{-\pi} ~{\pi}\frac{a_0}{2}\mathrm{d}x +
\int_{-\pi}~{\pi} [\sum\limits_{k=1}"{\infty}(a_k\cos kx+b_k\sin kx)\\mathrm{d}x=a_0\pi\iff a 0 =
\frac{1}{\piR\int_{-\pi}~{\pi} f(x)\mathrm{d}x$

$\displaystyle\int_{-\pi} ™~ {\pi}f(x)\cos nx\mathrm{d}x = \frac{a_0}{2}\int_{-\pi} "~ {\pi}\cos
nx\mathrm{d}x + \sum\limits_{k=1}"{\infty}(a_k\int_{-\pi} ~{\pi}\cos kx\cos
nx\mathrm{d}x+b_k\int_{-\pi}~{\pi}\sin kx\cos nx\mathrm{d}x)=a_n\int_{-\pi} ~{\pi} \cos™2 nx
\mathrm{d}x = a_n\pi\iff a_n = \frac{1}{\pi}\int_{-\pi} ~ {\pi}f(x)\cos nx\mathrm{d}x$

00 $b n=\frac{1}{\pi}\int_{-\pi}~{\pi}f(x)\sin nx\mathrm{d}x$

goodd

0 $f$00 $2pis 0000000000000 000O $f\sim\frac{a 0}{2} +
\sum\limits_{n=1}"~{\infty}(a_n\cos nx+b_n\sin nx)$.

goon

$f 000 $fa,bls 00000 $[a,bl$ 00000000 $OO00O0ODODOOOOOOOOODODODODO
O0 $f$0 $fa, bls 00000000

Fourier 0 0 00
O $f$0$2pis 00000 $[-\pi\pil$ 00000000 $f$ 0 Fourierd OO $\forallx 0$ 0 OO0

$\frac{f(x 0+0)+f(x_0-0)}{2}$.

O 00%$f$ O $[-\pi, \pi]l$ OO OO0 $\Rightarrow f$ 0 0O O Fourier 0 0O O

guoooobobod

OO0 [-\pi, \pilODO

$\displaystyle\mathbf{Th.}$
0100000 $2pis 0000 $f(x)$ 00000000000 0OO0O

$$\begin{cases} a n =0, &n =0, 1, 2, \ldots)\\ b_n = \frac{2} {\pi}\int_{0}~ {\pi}f(x)\sin nx
\mathrm{d}x, &(n = 1, 2, \ldots) \end{cases}$$

0200000 $2pis 0000 $f(x)s 00 000000O0O0O0O0O0OO

$$\begin{cases} a_n = \frac{2}{\piHint_{0} "~ {\pi}f(x)\cos nx \mathrm{d}x, &(n =0, 1, 2, \Idots)\\
b n=0,&n=1,2,\ldots) \end{cases}$$

$\displaystyle\mathbf{Def.}$
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O04¢f(x)$00000000000000O0O0O0OO
O0$f(x)$0000000000000DO0O0O0O0O

000 [0, \pil OO

ooooo
00 00$9(x)=-f(-x)$
000 D0$9(x)=f(-x)$

0002000000

0000 $\frac{\pi x}{L} =t$
$F(t) = f(\frac{Lt}{\pi})$

$f(x) = \frac{a_0}{2}+\sum\limits_{n=1}"{\infty}(a_n\cos\frac{n\pi x} {L}+b_n\sin\frac{n\pi
x}{L})$

13.2 Fourier O OO OO0 QOO

Dirichlet 0 O

$f00 2pis 0000000 0O0OO0O0OO
0 $S n(x 0)=\frac{a 0} {2}+\sum\limits_{k=1}"~{n}(a_k\cos kx 0+b _k\sin kx 0)$

$$S n(x_0) = \frac{1}{2\pi}\int_{-\pi} ™~ {\pi}f(x)\mathrm{d}x +
\sum\limits_{k=1}"{n}\frac{1}{\piH\int_{-\pi} ~{\pi}f(x)(\cos kx\cos kx_0+\sin kx\sin
kx_0)\mathrm{d}x$$ $$=\frac{1}{\pi}\int_{-\pi} ~{\pi}f(x)(\frac{1} {2} +\sum\limits {k=1}"{n}\cos
k(x-x_0))\mathrm{d}x$$
$$=\frac{1}{\pi\int_{-\pi} ~{\pi}f(x)(\frac{\sin(n+\frac{1}{2})(x-x_0)}{2\sin\frac{x-
x_0}{2}})\mathrm{d}x$$
$$=\frac{1}{\piNint_{-
\pi} ™~ {\pi}H(t+x_0)(\frac{\sin(n+\frac{1}{2})t}{2\sin\frac{t} {2} })\mathrm{d}x$$
$$ \frac{1}{\piH\int_{0}~ {\pi}(f(t+x_0)+f(x_O-

))(\frac{\sin(n+\frac{1}{2})t}{2\sin\frac{t} {2} })\mathrm{d}x $$

dddoooooououooo

Riemann-Lebesgue 1 [

$\displaystyle\mathbf{Th.\\\ 13.1:}$ (R-L 0 O)
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0 ¢$f$0 $[a,bl$ 00000000 0O0O0O0O

$\displaystyle\lim\limits_{\lambda\to +\infty H\int_{a} "~ {b}f(x)\cos \lambda x \mathrm{d}x=0$%
$\displaystyle\lim\limits_{\lambda\to +\infty H\int_{a} "~ {b}f(x)\sin \lambda x \mathrm{d}x=0%
$\displaystyle\mathbf{Th.\\ 13.2:}$

O $f$ O $l-\pi, \pil$ O O OO$f'$ O $[-\pi, \pils DO ODDOODDOODO $f(-\pi)=Ff(\pi)$O0 O O

$a_n=o(\frac{1}{n}), b_n=o(\frac{1}{n}), n\to \infty$

$\displaystyle\mathbf{Th.\\ 13.3:}$

O $f$ O $[-\pi, \pil$ OO0 $k+1$ 0000~ {(n+1)}$ O $[-\pi, \pil$ 00000 D00O0ODO0O $f(-
\pi)=Ff(\pi), f'(-\pi)=F"(\pi),\Idots, f~{(k)}(-\pi)=F~{(k)}(\pi)$00 O O

$a_n=o(\frac{1}{n"{k+1}}), b_n=o(\frac{1}{n"{k+1}}), n\to \infty$

gooo

O R-LOO[DirichletD 0 OO0

guoooobobboogn

$f 00 $2pis 000000000 0ODO0O0O0O0OO $f0000000O0O $x 0$0000000O0ODO
000000 $f$0$x 0800000000

Dini0 00O

$\displaystyle\mathbf{Th.\\ 13.5:}$
0 $f$0 $2\pis 000000 $[-\pi, \pil$ 0000000000 $s\in\mathbb{R}$J0 O
$\displaystyle\varphi(t)=f(x_0+t)+f(x_0-t)-2s$,

O $\exists\ \delta>0, \mathrm{s.t.} \frac{\varphi(t)} {t}$ O $[0,\delta]$ OO O DO OO0 OODOO0O $f$
O Fourier00O 0 $x 0$ 0000 $s$0

$\displaystyle\mathbf{Th.\\ 13.7:}$

0 $f$ 0 $2pis 000000 $[-\pi, \pil$ 0000000000 $f$0 $x 0400000000000
00000000000000000 $x0$0000 $f(x_0)s.

$\displaystyle\mathbf{Def.\ \ 13.2:}$
0 $f$0 $U~{o}(x 0)$ 000000 DODO $\delta >0, L>0, \alpha > 0$00 O O $t\in (0, \delta]$ O O

$[f(x_0+t)-f(x_0+0)\le Lt~ {\alpha}$,
$|f(x_0-t)-f(x_0-0)|\le Lt~ {\alpha}$,

CVBB ACM Team - https://wiki.cvbbacm.com/



Last
update:
2020/05/08
11:48

00 $f$ 0 $U~{o}(x 0)$ O OO $\alpha$ O Lipschitz O O O

2020-2021:teams:mian:pantw:real_analysis https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:mian:pantw:real_analysis&rev=1588909715

$\displaystyle\mathbf{Th.\\ 13.6:}$

0 $f$ 0 $2\pi$ 00D OO0 $[-\pi, \pil$ DOODODODDD $f$ 0 $U~{o}(x 0)$ 000 $\alphas
0 Lipschitz 00000 $f$ 0000000 $x 0$0000

Moo ogduood

14.1Euclid 0000000000

ndogoggno
00 $\mathbb{R}"n$0 0000000

Euclid O O
00

OO0O000 $\mathbb{R}"n$ 000 0O0O0OOO0O
$\displaystyle\langle \boldsymbol{x} \boldsymbol{y}\rangle=\sum\limits_{i=1}"~{n}x iy i$

1. 0O OO $\langle \boldsymbol{x}, \boldsymbol{x}\rangle\ge 0%

2. 000 $\langle \boldsymbol{x}, \boldsymbol{y}\rangle = \langle \boldsymbol{y},
\boldsymbol{x}\rangle$

3. OO0 $\forall \lambda,\forall \mu, (\langle \lambda\boldsymbol{x} +\mu \boldsymbol{y},
\boldsymbol{z}\rangle = \lambda\langle \boldsymbol{x}, \boldsymbol{z}\rangle+\mu\langle
\boldsymbol{y}, \boldsymbol{z}\rangle)$

Cauchy-Schwartz 0 0 O

$\displaystyle\langle \boldsymbol{x}, \boldsymbol{y}\rangle”™2\le \langle \boldsymbol{x},
\boldsymbol{x}\rangle\langle \boldsymbol{y}, \boldsymbol{y}\rangle$

g
00

$\displaystyle\mathbf{Def.\\\ 14.1.1}$
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$\displaystyle\|\boldsymbol{x}\|=\sqrt{\langle \boldsymbol{x}, \boldsymbol{x}\rangle}$00 O O
$\boldsymbol{x}$ OO OO

1. 00O $\|\boldsymbol{x}\|\ge 0%
2. 000 $\|\lambda \boldsymbol{x}\|=[\lambdal|\|\boldsymbol{x}\|$
3. 00000 $\|\boldsymbol{x}+\boldsymbol{y}\|\le\[\boldsymbol{x}\|+\[\boldsymbol{y}\|$

0
$|\langle \boldsymbol{x}, \boldsymbol{y}\rangle|\le \|\boldsymbol{x}\|\|\boldsymbol{y}\|$

$\displaystyle\|\boldsymbol{x}+\boldsymbol{y}\|~2\le(\|\boldsymbol{x}\|+\|\boldsymbol{y}\|) ~2$

g

$\displaystyle\cos\theta(\boldsymbol{x}, \boldsymbol{y})=\frac{\langle \boldsymbol{x},
\boldsymbol{y}\rangle} {\|\boldsymbol{x}\|\|\boldsymbol{y}\|}$

un

$\displaystyle\mathbb{R}~2$ O O O $\boldsymbol{x}, \boldsymbol{y}$ OO 00O O
$\|\boldsymbol{x}-\boldsymbol{y}\|$

HEN

$\displaystyle\mathbf{Def\\ 14.1.2}$
0 O [0$B_r(\boldsymbol{a})=\{\boldsymbol{x}\in \mathbb{R} ~n|\ \|\boldsymbol{x}-
\boldsymbol{a}\|<n\}$

goog

$\displaystyle\mathbf{Def\\ 14.1.3}$
$\displaystyle\{\boldsymbol{x} k\}\subset \mathbb{R}"~n$

$\displaystyle\exists \boldsymbol{a}\in\mathbb{R} ~n,\forall \varepsilon>0,\exists K\in

\mathbb{N} ~{\star},\forall k>K, \mathrm{s.t.} \[\boldsymbol{x} k-\boldsymbol{a}|<\varepsilon${C
000 $\{\boldsymbol{x} k\}$ 00O $\boldsymbol{a}$]0 O

$\lim\limits_{k\to\infty }\boldsymbol{x} k=\boldsymbol{a}$[J0 $\boldsymbol{a}$ 00O OO OO0

DO0O0O00000 $\lim\imits_{k\to \infty}x_{i, k}=a_i$(0 O O $\{\boldsymbol{x}_k\}$ 0000 O
0 $\boldsymbol{a}$[]

$\displaystyle\mathbf{Th.\\ 14.1.1}$

00000 $\boldsymbol{a}\iff$ OO O0O0OOO $\boldsymbol{a}$.
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guoooon

$\displaystyle\mathbf{Def.\ \ 14.1.4\quad \text{O O O }}$
goooooon
$\displaystyle\mathbf{Th.\\ 14.1.2\quad \text{O O 0O 0O 0O O }}$

OooOo$Nffs0o0o0oon

goooo

$\displaystyle\mathbf{Def.\ \ 14.1.5\quad \text{O O }}$

$E\subset\mathbb{R}~n$00 $\forall \boldsymbol{x}\in E, \exists \varepsilon>0, \mathrm{s.t.}\
B_{\varepsilon}(\boldsymbol{x})\subset E$(0 0 $E$ 0 OO DO

godooooooodouoooooon

OO0 $\mathbb{R}"n$ O $\varnothing$ DO OO ODOODOO
$\displaystyle\mathbf{Prop.\\ 14.1.1}$
godooooododouoooooooouooon

gobogobooobobooobobooobooooo

guooooobood

$\displaystyle\mathbf{Def\\ 14.1.6}$
O $E\subset \mathbb{R}"~n, \boldsymbol{x}\in\mathbb{R}"~n$,

1. $\exists B_{\varepsilon}(\boldsymbol{x})\subset E \iff \boldsymbol{x}$ O $E$ 0 O O

2. $\exists B_{\varepsilon}(\boldsymbol{x})\subset E~{c} \iff \boldsymbol{x}$ O $E$ O OO

3. $\forall B_{\varepsilon}(\boldsymbol{x}), \exists \boldsymbol{p},\boldsymbol{g}\in
B_{\varepsilon}(\boldsymbol{x}), \mathrm{s.t.}\ \boldsymbol{p}\in E, \boldsymbol{g}\notin
E\iff \boldsymbol{x}$ 0O $E$ O OO0

0000000 $es000000 $E~{\circ}$

000000000 $e$ 000000 $\partial E$O

gd

$\displaystyle\mathbf{Def.\ \ 14.1.7\quad \text{O O }}$

$\displaystyle\boldsymbol{a}$ 0O 0O O $\iff E\subset \mathbb{R}"n, \boldsymbol{a}\in
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\mathbb{R}"~n, \forall \varepsilon > 0, \exists \boldsymbol{p}\in
((B_{\varepsilon}(\boldsymbol{a}))\cap E)$

$\displaystyle\boldsymbol{a}$ O 0O O O $\iff \Inot (\boldsymbol{a}$ O O O $)$

goooo

$\displaystyle\mathbf{Def.\ \ 14.1.8}$
O00oo0ooooooo $eE'$Q
$\displaystyle\bar{E}=E\cup E'$ 00O $E$ 0 OO O
$\displaystyle\mathbf{Th.\\ 14.1.3}$

00 $E$ 000 $\iff E' \subset E$
$\displaystyle\mathbf{Th.\\ 14.1.4}$

00 $E$ 000 $\iff \forall \{\boldsymbol{a}_n\}\subset E, (\lim\limits_{n\to
\infty }\boldsymbol{a} n\inE$ 00 0 O O

$\displaystyle\mathbf{Th.\\ 14.1.5}$

OO0 $es0000000O00O0O0OO

guoooooobod

$\displaystyle\mathbf{Def\\ 14.1.9}$

0 $E$ O $\mathbb{R}*"n$ D0 DO OO OO0 $\boldsymbol{p}, \boldsymbol{g} \in E$(j0 O $E$ O O
00000000000 $es0000Oooo

00O OO QO$\varphi = (\varphi_1(t), \cdots, \varphi_n(t)): [a, b]\to \mathbb{R}"n$
0000 $warphi i(h$ 0000000 $wvarphis OO ODODODOOOOODOOOOOODOO
$\displaystyle\mathbf{Def.\ \ 14.1.10}$

$\displaystyle\mathbb{R}*n$ 00 00D O000O0OO0O000DOOOO0OODOOOOODOOO

14.2 Euclid D OO0 0000

gooog

$\displaystyle\mathbf{Th.\\ 14.2.1\text{QU OO O O O }$

0 $\{E_k\}$ O $\mathbb{R}"n$ DO DO DO OOO0ODODO $E 1\supset E 2\supset \cdots \supset
E k\supset E_{k+1}\cdots$[00 $\lim\limits_{k\to \infty}\mathrm{diam} E_k=0$00
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$\mathop{\capH\limits {k=1}~{\infty}E k$ 000000000
$\displaystyle\mathrm{diam}\ E = \sup\{\|\boldsymbol{x}, \boldsymbol{y}\|, \boldsymbol{x},
\boldsymbol{y}\in E\}$J0 $E$ OO 0O O

000 O O [Bolzano-Weierstrass[]

$\displaystyle\mathbf{Th.\\ 14.2.2\text{I0 000 00}

$\displaystyle\mathbb{R}"*n$ 0O OO0 $\{x kK\}$ 0D OODO0O

oo

$\displaystyle\mathbf{Def.\\ 14.2.1}\text{JO O O O }$

0 $S$ O $\mathbb{R}"*n$ 00O OO $\mathbb{R}"n$ OO T OO $\{U \alpha\}$ OO
$\cup_\alpha U \alpha \supset S$0 0 0O $\{U \alpha\}$ 0 $S$ 0000000

04S$00000000 ${U\alpha\}$ 0000000000000 $S$000 $S$400000

guoooon

$\displaystyle\mathbf{Th.\\ 14.2.3}N\text{QU OO OO OO }$
O $E$ O $\mathbb{R}"n$ 00O OO0O0ODOOOOO

1. $E$ 00000
2.$6$0000000000C00O0ODOOOOODODOO $E$DO
3.$6$ 000000

1430000000 oon

ud

$\displaystyle\mathbf{Def\\ 14.3.1}\text{JO O O O O }$

$\displaystyle\mathbb{R}"n$ OO DO $R$ 000 $f$ 00 $n$ 00 0DOO0ODOOO0O $f$000
O 0$\{f(\boldsymbol{x})\}subset R$ 00 $f$ O 0 OO

$z=f(\boldsymbol{x})$ O $z=f(x_1, \cdots, x_n)$
DOooooooo $z=f(x,y)$
$\displaystyle\mathbf{Def.\\ 14.3.2}\text{JO O O O }$

$D\subset \mathbb{R} ~n$[$z=f(\boldsymbol{x})$ OO OO $D$ 00 $n$ OO
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0 J$\boldsymbol{a}\in\mathbb{R}"n$ 0 $D$ 0O OO OJ$AS DD DD OO

$\displaystyle\lim\limits_{\boldsymbol{x}\to\boldsymbol{a} }f(\boldsymbol{x})=Al\iff \forall
\varepsilon>0,\exists \delta>0,\forall \boldsymbol{x}\in
B_{\varepsilon}(\boldsymbol{a}),|f(\boldsymbol{x})-A|<\varepsilon$

0 $AS$ O $f(\boldsymbol{x})$ O $\boldsymbol{a}$ OO OO OO

0 00O O [JHeine-Borel[]

$\displaystyle\mathbf{Th.\\ 14.3.1}\text{JOD O O O O}$
$D\subset \mathbb{R} ~n$[$z=f(\boldsymbol{x})$ OO OO $D$C0C $n$ 00O 00O

$\displaystyle\lim\limits_{\boldsymbol{x}\to\boldsymbol{a} }f(\boldsymbol{x})=A\iff \forall
\{\boldsymbol{x} k\}\subset D, \boldsymbol{x} k\neq \boldsymbol{a},
\boldsymbol{x}_k\to\boldsymbol{a}(k\to\infty)$0C O $\lim\limits_{k\to

\infty }f(\boldsymbol{x} k)=A$

goon

$\displaystyle\mathbf{Def\\ 14.3.3}Ntext{JOD O OO O}$

$D\subset \mathbb{R} " n3$[$z=f(\boldsymbol{x})$ 0O OO $D$ 000 0O OOCOOO $(x 0,y 0)$0
O0000000%$y\neqy 0$00 O $\lim\limits_{x\to x 0}(x,y)$ OO OO OO $\lim\limits_{y\to

y ORlim\limits {x\to x 0}(x, y)$ DO 0O D000 O0O0D0O0O $f(x,y)$ 00 $(x 0,y 0)$ 00 $x$ 00
$y$ 000000

$\displaystyle\mathbf{Th.\\ 14.3.2}$

0000 $f(x,y)$ 0000000000000 0DOOOO0OOOOO0

gd

$\displaystyle\mathbf{Def.\\ 14.3.3}\text{JO0 0 O O O }$

$D\subset \mathbb{R}~n$0$z=f(\boldsymbol{x})$ OO OO $D$ 00O $n$ 000 OO DODO
$\boldsymbol{a}\in D$[0 $\lim\limits_{\boldsymbol{x}\to

\boldsymbol{a} }f(\boldsymbol{x})=f(\boldsymbol{a})$000 O O O $f(\boldsymbol{x})$ O
$\boldsymbol{a}$ 00O OO

0000 4$f$0¢Ds000DO0ODOOO
goobooobooodod
0000000000000 0 $f$0000000000 $f$0000000O0O0O0O0O

$\displaystyle\mathbf{Example. \ 14.3.7 }\text{}$
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00000 $\det: M_{n\times n}\to \mathbb{R}$ 0O DO OO OO0 $M {n\timesn}$ 00O
$\mathbb{R}"~{n"2}$[]
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$\displaystyle\mathbf{Example. \ 14.3.8}\text{}$
sn$ 00 0000000oo
0 $P(\boldsymbol{x}), Q(\boldsymbol{x})$ O $n$ O 0 O O

$\displaystyle\lim\limits_{\boldsymbol{x}\to\boldsymbol{a}} P(\boldsymbol{x})Q(\boldsymbol{x})=P
(\boldsymbol{a})Q(\boldsymbol{a}),

\lim\limits_{\boldsymbol{x}\to\boldsymbol{a} }\frac{P(\boldsymbol{x})}{Q(\boldsymbol{x})}=\frac{
P(\boldsymbol{a})}{Q(\boldsymbol{a})}, (Q(\boldsymbol{a})\neq 0)$

144000000000

goog

$\displaystyle\mathbf{Def\\ 14.4.1}\text{JO O O O O}$

$D\subset \mathbb{R}~n$[$z=f(\boldsymbol{x})$ OO OO $D$ 00 $n$ 0O OO OO $\forall
\varepsilon>0,\exists \delta >0,\forall \boldsymbol{x},\boldsymbol{y}\in D, (\]\boldsymbol{x}-
\boldsymbol{y}\|<\delta\Rightarrow |f(\boldsymbol{x})-f(\boldsymbol{y})|<\varepsilon)$J0 O O O
$f¢ 0 $sD$SOO0OOOO

goog

$\displaystyle\mathbf{Def.\ \ 14.4.2}\text{}$

$D\subset \mathbb{R} ~n$[1$\boldsymbol{f}: D\to \mathbb{R}"m$ O $D$ O $\mathbb{R}"m$ O O
0000 $\boldsymbol{x} O\in D$00 O $\forall \varepsilon>0,\exists \delta >0,\forall
\boldsymbol{x}\in D, (\[\boldsymbol{x}-\boldsymbol{x_0}\|<\delta\Rightarrow
[\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}(\boldsymbol{x_0})|<\varepsilon)$(0 O O O
$\boldsymbol{f}$ 0 O $\boldsymbol{x} 0$ O OO

ooooooood

Oo0ooo

$$\left(\begin{matrix} z_1\\ \vdots\\ z_m \end{matrix}\right)=\left(\begin{matrix} f 1(x_1, \cdots,
x_n)\\ \vdots\\ f m(x_1, \cdots, x_n) \end{matrix}\right)$$

gd

$\displaystyle\mathbf{Th.\\ 14.4.1 }\text{}$

$\displaystyle\boldsymbol{f}: \mathbb{R}~n\to\mathbb{R}"m$ O O 0O O O $\iff \forall f_i$[O$f_i$ O

https://wiki.cvbbacm.com/ Printed on 2026/01/14 04:25



2026/01/14 04:25 19/50 ooooooo20

oogoo
$\displaystyle\mathbf{Th.\\ 14.4.2}$
$\displaystyle\boldsymbol{f}: \mathbb{R} ~n\to\mathbb{R} *m$Q0 00O 0O O O

1. $\boldsymbol{f}$ DO O OO

2. 0 $\mathbb{R}"*n$ OO DO OO OO $\boldsymbol{x} n\to \boldsymbol{x} 0(n\to \infty)$00 O
$\boldsymbol{f}(\boldsymbol{x} n)\to \boldsymbol{f}(\boldsymbol{x}_0)(n\to \infty)$

3. 00000 $E\subset \mathbb{R}"m$$\boldsymbol{f}~{-1}(E)$ O $\mathbb{R}"n$ O OO

$\displaystyle\mathbf{Th.\\ 14.4.3}$

godooooodooooon

$\displaystyle\mathbf{Th.\\ 14.4.4}$

$D$ O $\mathbb{R}"*n$ DO DO ON$f$ 0 $D$S 00O O ODOOOOOOOODO

1. 00000$f$s 0 ¢DsO0O0OO
2. 00000¢fs 0 ¢Ds0000ODDOOOODOODO
3.$f$ 0 $D$OOOOODO

$\displaystyle\mathbf{Th.\\ 14.4.6}$

doooooobooooooooobooa

0o

0i100doooboooooooooboooooo o200oooooooboooooo
$\displaystyle\mathbf{Th.\\ 14.4.7}$

$D$ O $\mathbb{R}"n$ 00O ON$f$ 0 $D$ 00 OO OO OO $\forall y\in \mathbb{R}, (\exists
\boldsymbol{x} 1, \boldsymbol{x} 2\in D, y\in[f(\boldsymbol{x} 1), f(\boldsymbol{x} 2)]\Rightarrow
\exists \boldsymbol{x}\in D, \mathrm{s.t.}\ y=f(\boldsymbol{x}))$

ooyt

1510000000

goad

000 $D\in\mathbb{R}~n, f: D\to \mathbb{R}$[0 $D$ O O O 0O O $\boldsymbol{x} 0$0 O $D$
00 $\boldsymbol{x} 0$ OO OO $x$00 O

$f(\boldsymbol{x})-f(\boldsymbol{x} 0)=\lambda 1\Delta x_1+\lambda_2\Delta
X_2+\cdots+\lambda_n\Delta x_n+o(\|\Delta \boldsymbol{x}\|)$
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0 O O%$\lambda_1, \cdots, \lambda _n$ O O O [J$\Delta \boldsymbol{x}=\boldsymbol{x} -
\boldsymbol{x} 0=(\Delta x_1, \cdots, \Delta x_n)$[]

O0000 $f$ 0 $\boldsymbol{x} 0$ OO OO

O0O000D00O $f$ 0 $\boldsymbol{x} 0$ 00000 OCO0OOOOOOODO

gd

$\displaystyle\mathbf{Def\\ 15.1.2}$

000 $D\in\mathbb{R}~n, f: D\to \mathbb{R}$[00 $D$ O O O OO $\boldsymbol{x} 0=(x 1,
\cdots, x_n)$0 O

$\displaystyle\lim\limits_{\Delta x_i\to 0}\frac{f(x_1, \cdots, x_i+\Delta x_i, \cdots, x_n) - f(x_1, \cdots,
X_i, \cdots, x_n)}{\Delta x_i}$

00000 $f$ 0 $\boldsymbol{x} 0$ 0000 $is 0 0000000000000 $f$0
$\boldsymbol{x} 0$ 000 $x i$ 0000000 $\frac{\partial f}{\partial x_i}(\boldsymbol{x_0})$
0 $f {x_i}(\boldsymbol{x} 0)$

$\displaystyle\mathrm{d}f(\boldsymbol{x} 0) = \sum\limits_{k=1}"{n}\frac{\partial f}{\partial
x_k}(\boldsymbol{x} 0)\mathrm{d}x k$

goodooooogd

gd

000 $D\subset \mathbb{R}"n, f: D\to \mathbb{R}$[J0 0 $E$ OO O OO
$\boldsymbol{x} 0=(x_1, \cdots, x_n)$00 0 0O O $f$ O $\boldsymbol{x} 0$ 0000000 OOOODO
good

$(\frac{\partial f} {\partial x_1}(\boldsymbol{x} 0), \cdots, \frac{\partial f}{\partial
x_n}(\boldsymbol{x} 0))$ O $f$ O $\boldsymbol{x} 0$ OO 00 OO $\mathrm{grad}\
f(\boldsymbol{x} 0)$0

goon

$\displaystyle\boldsymbol{u}$ 0O 0O O 0O O O J$\boldsymbol{x} O\in D$J00 O $\lim\limits_{t\to
0~ {+} }\frac{f(\boldsymbol{x} 0+t\boldsymbol{u})-f(\boldsymbol{x} 0)}{t}$ OO $f$ O
$\boldsymbol{x} 0$ O 0 O O $\boldsymbol{u}$ 0O OO 0000 $\frac{\partial f}{\partial
\boldsymbol{u}}(\boldsymbol{x}_0)$.

goooon

O $z=f(x,y)$ 00 $(x 0,y 0)$ 00000000000 $\limlimits_{\Delta x\to
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ORfrac{f(x_0+\Delta x, y 0)-f(x 0,y 0)}{\Deltax}$ DO OO OO OO0OO $z=f(x,y)$ 0O $(x 0,
y0)$00 $x$00000O

0$y$00000

0Doooo0o0o0o0

ooooo
0$x$00000000 $y=y 04000 $M0$00D00 $MOT x$0 $x$ 00000

0 $y$ 000

guoooobn

$\displaystyle\mathrm{d}z=\frac{\partial f} {\partial x}\mathrm{d}x+\frac{\partial f} {\partial
yHmathrm{d}y$

0 O 0$\mathrm{d}u=\frac{\partial u} {\partial x}\mathrm{d}x+\frac{\partial u} {\partial
yHmathrm{d}y+\frac{\partial u}{\partial zZ}\mathrm{d}z$

gooo

OO0O0DOO0O000 $\not\Rightarrow$s 0O OO0

good

00000 $\Rightarrows DO OO0 000000000 $\mathrm{d}f = \sum \frac{\partial f}{\partial
x_iH\mathrm{d}x_i$

good

0000 $z=f(x,y)$ 00 0O $\frac{\partial z}{\partial x}, \frac{\partial z} {\partial y}$ O O $(x_0,
y0)$ 0000000000000 0O000DO0O00o0oO0DO

googod

OO0O000 $\Rightarrow$ OO0 OO
0000 $\Rightarrow$s OO OO
0000 $\Rightarrow$ O OO0 000
oog

1. $f(x,y) =\sqrt{x"2+y"2}$ 0000
2. $f(x, y) = \begin{cases}\frac{xy}{x"2+y"2}, & x*2+y”~2\neq 0\\ 0, &
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x"2+y~2=0\end{cases}$
3. $f(x, y) = \begin{cases}\frac{xy}{x"2+y"2}, & (x, y)\neq (0, 0O)\\ 0, & (x, y)=(0,
0)\end{cases}$

$f$ O O $\boldsymbol{x} 0=(x_1, \cdots, x n)$ O O $\Rightarrow$ O $f$ O $\boldsymbol{x} 0$ O
00000 $\boldsymbol{u}$ OO OO OO OOODO

$\displaystyle\frac{\partial f}{\partial
\boldsymbol{u}}=f {x_1}(\boldsymbol{x} 0)u_1+\cdots+f {x n}(\boldsymbol{x} 0)u n$

00 $(u_l,u 2, \cdots,u n)$ 00000 $\boldsymbol{u}$ 0O OO OO

15200000000

goog

0oo00oood
$u=\phi(t), v=\psi()$ 00 $t$ 00000 $z=f(u,v)$ 0O OO $(u,V)$OODO000OO
$z=f\phi(t), \psi(t)]$ 0O OO0 $t$ 000000000000 000

$\displaystyle\frac{\mathrm{d}z} {\mathrm{d}t}=\frac{\partial z} {\partial
u\frac{\mathrm{d}u} {\mathrm{d}t}+\frac{\partial z} {\partial
vihfrac{\mathrm{d}v}{\mathrm{d}t}$

godoooood
$u=\phi(x, y), v=\psi(x, y)$ 00O $(x,y)$ 0000000 $z=f(u,v)$0 O OO $(u,v)$J0OOOOO

000 $z=f[\phi(x, y), \psi(x, y)]$ 0000 $(x,y)$ 0000000000000 O0O

$\displaystyle\frac{\partial z} {\partial x} =\frac{\partial z} {\partial u}\frac{\partial u} {\partial
x}+\frac{\partial z} {\partial v}\frac{\partial v}{\partial x}$

$\displaystyle\frac{\partial z} {\partial y}=\frac{\partial z} {\partial u}\frac{\partial u} {\partial
y}+\frac{\partial z} {\partial v}\frac{\partial v} {\partial y}$

00 $f(u_1,\ldots,u m)$ 0000 $(u_1,\ldots, um)$Q$u_k(x_ 1, \ldots, x_n), k=1, 2,\ldots, m$ O
$(x_1,\ldots, x n)$ 0O DO

$\displaystyle\frac{\partial f} {\partial x_i}=\sum\limits_{k=1}"~{m}\frac{\partial f}{\partial
u_k}\frac{\partial u_k}{\partial x_i}, i = 1, \ldots, n.$

good

$z = f(u, x, y), u = \phi(x, y)$
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$z = f(\phi(x, y), x, y)$

O %v=x,w=yYy$

$\displaystyle\frac{\partial v} {\partial x}=\frac{\partial w} {\partial y} = 1, \frac{\partial w} {\partial
x}=\frac{\partial v} {\partial y}=0%

O

$\displaystyle\frac{\partial z}{\partial x} =\frac{\partial f} {\partial u}\frac{\partial u} {\partial
x}+\frac{\partial f} {\partial x}$

$\displaystyle\frac{\partial z}{\partial y}=\frac{\partial f} {\partial u}\frac{\partial u} {\partial
y}+\frac{\partial f} {\partial y}$

0000 $\frac{\partial z} {\partial x}$ O $\frac{\partial f} {\partial x}$.

00000000 [Qacobian OO

$\displaystyle\mathbf{Def.\\ 15.2.1}$

000000 $\boldsymbol{f}: D\subset \mathbb{R}~n\to \mathbb{R}"“m$[0 $\boldsymbol{x} 0 =
(x_1,\cdots, x nN\in D$ O O O $m\times n$ 0 0 0O $A=(a_{ij})_{m\times n}$00 O

$\displaystyle\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f} (\boldsymbol{x}_0)=A\Delta
\boldsymbol{x}+r(\Delta \boldsymbol{x})$

$\displaystyle\lim\limits_{\|\Delta \boldsymbol{x}\|\to 0}\frac{\|r(\Delta
\boldsymbol{x})\|} {\|\Delta\boldsymbol{x}\|}=0%

00 $\boldsymbol{f}$ O $\boldsymbol{x} 0$ OO 0O 00O $A\Delta \boldsymbol{x}$ O
$\boldsymbol{f}$ O $\boldsymbol{x} 0$ OO OO OO0
$\mathrm{d}\boldsymbol{f}(\boldsymbol{x} 0)=A\mathrm{d}\boldsymbol{x}$.

$$J\boldsymbol{f}(\boldsymbol{x} 0)=\left[\begin{matrix} \frac{\partial

f 1(\boldsymbol{x_0})}{\partial x 1} & \cdots & \frac{\partial f n(\boldsymbol{x_0})}{\partial x_n} \\
\vdots & \ddots & \vdots \\ \frac{\partial f_1(\boldsymbol{x 0})}{\partial x_1} & \cdots & \frac{\partial
f 1(\boldsymbol{x_0})}{\partial x_1} \\ \end{matrix}\right]$$

0000000 $\boldsymbol{f}$ OO $\boldsymbol{x} 0% O Jacobian O OO

000000 $mitimesn$ 000000 JacobianO OO OO
$\mathrm{d}\boldsymbol{f}(\boldsymbol{x} 0)=J\boldsymbol{f}(\boldsymbol{x} 0)\mathrm{d}\bol
dsymbol{x}$

guooooon

O 00O $E\subset \mathbb{R} "I, D\subset \mathbb{R}"m$[0 O $\boldsymbol{g}: E\to D,
\boldsymbol{f}:D\to \mathbb{R}"n$J0 0 00O 0O O $\boldsymbol{h}=\boldsymbol{f}\circ
\boldsymbol{g}: E\to R n$.
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00 $\boldsymbol{g}$ O $\boldsymbol{u} O\in E$ O O O [$f$ O

$\boldsymbol{x} 0=\boldsymbol{g}(\boldsymbol{u} ONinD$ OO OO O OO 0O $\boldsymbol{h}$
O $\boldsymbol{u} 0$ 00O OO0

$J\boldsymbol{h}(\boldsymbol{u} 0)=)\boldsymbol{f}(\boldsymbol{x} 0)J\boldsymbol{g}(\boldsymb
ol{u}_0)$
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guoooobbogogd

$z=f(u, v)$

$\displaystyle\mathrm{d}z=\frac{\partial z} {\partial u}\mathrm{d}u+\frac{\partial z} {\partial
vHmathrm{d}v$

$u,v$ 000000000000

1300o0douon

goon

$z=f(x,y)$ 000000
ooooo

$\displaystyle\frac{\partial} {\partial x}(\frac{\partial z} {\partial x})=\frac{\partial~2 z} { {\partial
x} 2} =f_{xx}(x, y)$

$\displaystyle\frac{\partial} {\partial y}(\frac{\partial z} {\partial y})=\frac{\partial~2 z} { {\partial
y}"2}=f_{yy}(x, y)$

gooognd

$\displaystyle\frac{\partial} {\partial y}(\frac{\partial z} {\partial x})=\frac{\partial~2 z} { {\partial
xHpartial y}=f {xy}(x, y)$

$\displaystyle\frac{\partial} {\partial x}(\frac{\partial z} {\partial y})=\frac{\partial~2 z} {\partial
y\partial x}=f_{yx}(x, y)$

guoooooon

000 $z=f(x, y)$ 0000000000 $f {xy},f{yx}$000 $D$ 00000000 OODOODODO
00000000000

gogd

0 $D \subset\mathbb{R}*n$ OO OO OODO $D$ 0O 00D O0OOODOOODO $DSO OO DOODOO
$x_0, x_1\in D, \forall \lambda \in [0, 1]$00 $x_O+\lambda(x 1-x ONin D$J0 O $D$ 00O OO
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goog

0000 $f(x,y)$ 0000 $DSOOODODO

OO0 $D$ 00000 $(x 0,y 0)$ 0 $(x 0+\Delta x, y 0+\Delta y)$00 0 0 0O 0O 0O $\theta\in(0, 1)$[0
0

$f(x_O+\Delta x, y_0+\Delta y) - f(x_0, y 0) = f x(x_O+\theta \Delta x, y_0+\theta \Delta y)\Delta x +
f y(x_O+\theta \Delta x, y 0+\theta \Delta y)\Delta y$

agoo

O $D \subset \mathbb{R}~n$ O O O O O$f:D\to \mathbb{R}$ O 0O O 0O O $\boldsymbol{a},
\boldsymbol{b} \in D$00 O $\boldsymbol{\xiH\in D$J0 0O O

$(\boldsymbol {b}) - f(\boldsymbol{a})=/f(\boldsymbol {\xi})(\boldsymbol{b}-
\boldsymbol{a})$[$\boldsymbol{\xi}=\boldsymbol{a} +\theta(\boldsymbol {b}-\boldsymbol{a}),
\theta\in (0, 1)$[]

goog

good

$\displaystyle\mathbf{Th.\\ 15.3.2}$

000 $f(x, y)$ 00 $(x 0,y 0)$ 000 $US 000 $k+1$ 00000000000 $U$D0OOO
$(x_O+\Delta x, y 0+\Delta y)$ O O

$f(x_O+\Delta x, y 0+\Delta y)=f(x 0, y _0)+(\Delta x\frac{\partial} {\partial x}+\Delta
y\frac{\partial} {\partial y})f(x 0, y _0)+\frac{1}{2!}(\Delta x\frac{\partial} {\partial x} +\Delta
y\frac{\partial} {\partial y})"2f(x 0, y_0)+\cdots+\frac{1}{k!}(\Delta x\frac{\partial} {\partial
x}+\Delta y\frac{\partial} {\partial y})~k f(x_0, y_0)+R_k$

$R_k=\frac{1}{(k+1)!}(\Delta x\frac{\partial} {\partial x}+\Delta y\frac{\partial} {\partial
y})~{k+1}f(x_O+\theta\Delta x, y_O+\theta \Delta y), \quad \theta\in(0,1)$ O O Lagrange 0 0O O

$$(\Delta x\frac{\partial} {\partial x}+\Delta y\frac{\partial} {\partial
y} ™ {p}=\sum\limits_{i=0}"~{p}C_p~i\frac{\partial~p f}{{\partial x} ~{p-i}{\partial y}~i}(x 0,
y_0)(\Delta x)~ {p-i}(\Delta y)"i$$

O00o0o0oooooooOon

O0000000g Leibnizoooog

r oooogoo .

good

$\displaystyle\mathbf{Th.\\ 15.3.3}$
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000 $f(x 1, x 2,\ldots, x n)$ 00O $(x 1~0,\ldots, x n~0)$ 0000 $k+1$ 000000 0OO0O0O
oggno
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$$f(x_1~0+\Delta x_1, x_2~0+\Delta x_2,\ldots, x_n"~0+\Delta x_n)=%$$ $$f(x_ 170, x_2"0, \ldots,
x_n70) +(\sum\limits_{i=1}"{n}\Delta x_i\frac{\partial}{\partial x_i})f(x_ 170, x 270, \ldots,

x n"~0)$$ $$+\cdots+\frac{1}{k!}(\sum\limits_{i=1}"{n}\Delta x_i\frac{\partial} {\partial x_i})"k
f(x_ 170, x_270, \ldots, x n~0)+R _k $$

$R_k = \frac{1}{(k+1)!}(\sum\limits_{i=1}"{n}\Delta x_i\frac{\partial}{\partial x_i})"~{k+1}
f(x_1~0+\theta\Delta x_1, x 2" 0+\theta\Delta x_2, \ldots, x_n"~0+\theta\Delta x_n), \quad \theta
\in(0, 1)$

O Lagrange O O[O

goboooobbooooboa

0 $\boldsymbol{\alpha}=(\alpha_1, \ldots, \alpha n)$ OO OO OO OO0
$[\boldsymbol{\alpha}|=\alpha_1+\cdots+\alpha _n$[$\boldsymbol{\alpha}!=\alpha 1N\alpha 2'\cdot
s\alpha_n!$[]

0 $\boldsymbol{x}=(x_1, \cdots, x_n)$0
$\boldsymbol{x} "~ {\boldsymbol{\alpha}}=x_1~{\alpha_1}\cdots x_n"~{\alpha_n}$

0
$(x_1+\cdots+x_n)~k=\sum\limits_{|\boldsymbol{\alpha}|=k}\frac{k!}{\alpha!}\boldsymbol{x} "~ {\b
oldsymbol{\alpha}}$

OO0O0D000 $\boldsymbol{\alpha}$ OO OO OO

$\displaystyle\boldsymbol{D} ~ {\boldsymbol{\alpha} }f(\boldsymbol{x})=\frac{\partial ™ {|\boldsymb
ol{\alpha}|}f}{\partial x_1"~{\alpha_1}\partial x 2"~ {\alpha_2}\cdots\partial x_n"{\alpha_n}}(x)$

$\displaystyle\mathbf{Th.\\ 15.3.4}$

$D\subset \mathbb{R}~n$ O O O O [J$f:D\to \mathbb{R}$ 00 $m+1$ 000000000 $\theta
\in (0, 1)$ 00O

$$f(\boldsymbol{x}-

\boldsymbol{x} 0)=\sum\limits_{k=0}"{m}{\sum\limits_{|\boldsymbol{\alpha}|=k}} {\frac{\boldsy
mbol{D} " {\boldsymbol{\alpha} }f(\boldsymbol{x} 0)}{\boldsymbol{\alpha}!}}(\boldsymbol{x}-
\boldsymbol{x} 0)"{\boldsymbol{\alpha}}+R m$$

$$R_m={\sum\limits_{|\boldsymbol{\alpha}|=k+1}}{\frac{\boldsymbol{D} ™~ {\boldsymbol{\alpha} }f
(\boldsymbol{x} 0+\theta(\boldsymbol{x}-
\boldsymbol{x_0}))}{\boldsymbol{\alpha}!}}(\boldsymbol{x}-
\boldsymbol{x}_0)~{\boldsymbol{\alpha}}$$

$$f(\boldsymbol{x})=f(\boldsymbol{a})+])f(\boldsymbol{a})(\boldsymbol{x}-\boldsymbol{a})
+\frac{1}{2}(x_1-a_1, \cdots, x_n-a_n)\left[\begin{matrix} \frac{\partial~2
f(\boldsymbol{a})}{{\partial x_1}"2} & \cdots & \frac{\partial™~2 f(\boldsymbol{a})}{{\partial
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x_1}\partial x_n}\\ \vdots & \ddots & \vdots \\ \frac{\partial~2 f(\boldsymbol{a})}{\partial x_n\partial
x_1} & \cdots & \frac{\partial~2 f(\boldsymbol{a})}{{\partial x_ n}~2}
\end{matrix}\right)\left(\begin{matrix} x_1-a_1\\ \vdots\\x_n-a_n \end{matrix}\right) $$

00000000000 $Hess(f)=(\frac{\partial™~2 f(\boldsymbol{a})}{\partial x_i\partial
X_j})_{n\times n}$00 O $f$ O $\boldsymbol{a}$ O O Hessian 0 0O

15400000

guoooobobbobd

D00 $Fx,y)$ 0000000

1. 00 $F$ 00 $P0(x 0,y 0)$ 00000000 $D\subset \mathbb{R}"2$ 0O O
2. $F(x 0,y 0) = 0%

3.04D$ 000000000 $F y(x, y)$

4. $F y(x 0,y 0)\neq 0%

OO0 $P0$ 0000 $U(P ON\subsetD$ DT OO $F(x,y)=0$ 0000000000000 $(x 0-
\alpha, x 0+\alpha)$ O O 0O 0O $y=f(x)$00 O

1. $f(x_0)=y 0, x\in (x_0-\alpha, x_0+\alpha)$ O $(x, f(x))\in U(P_0)$ O $F(x, f(x))\equiv 0%
2. $f(x)$ O $(x_0-\alpha,x_O+\alpha)$ O O OO

gooobobbn

000 $F(x,y)$0000000000000040000000 $Fx(x,y)$0$D$0 0000000
000 $F(x,y)=0$ 0000000 $y=Ff(x)$ O $(x_0-\alpha, x O+\alpha)$ 0000000000
$f'(x)=-\frac{F_x(x, y) }{F_y(x, y)}$

guoooobobbooooooooon

000 $Fix,y)$0O0O0ODoOO

1. 00 $F$ 00 $P O(x 0,y 0,z0)s00D0O0OOODO $D\subset \mathbb{R}"~3$ 0 OO
2. $F(x 0,y 0,z 0) = 0%

3.04D$000000D0O0 $F x, Fy, F z$

4. $F z(x 0,y 0,z 0)\neq 0%

OO0 $P0$ 0000 $UP ON\subsetD$ DO OO $F(x,y,2)=0$ 0000000000000 $U((x_0,
y_0))\subset \mathbb{R}~2$ 0O OO OO $z=f(x, y)$00 O

1. $f(x_0,y_0)=z_0, (x, y\in U((x_0, y_0))$ O $(x, y, f(x, y)\in U(P_0)$ O $F(x, y, f(x, y))\equiv 0$
2. $z=f(x,y)$ 0 $U((x 0,y 0))$ 0O OO OOODOO $\frac{\partial z}{\partial x}=-\frac{\partial
x}{\partial z}, \frac{\partial z} {\partial y}=-\frac{\partial y} {\partial z}$[J
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00 $$ \frac{\partial (F, G)}{\partial (u, v)} = \left\begin{matrix} F u&F v\ G u& G v \\
\end{matrix}\right|\neq 0 $$

RN

1. 00 $F(x,y,u,v),G(x,y,u,v)$00 $P 0(x 0,y O,u0,v0)$0000O0O0O0O $V\subset
\mathbb{R}~4$ 00O 0O

2. $F(x 0,y O,u 0,v0)=G(x 0,y 0,u0,v 0)=0%

3.0%$Vv$0$F, GS 000 00DOOO

4. $\left.{\frac{\partial(F, G)}{\partial(u, v)} }\right| {P_0} \neq 0%

00 $P0$0DO0ODO $UP O)\subsetV$ 0D OO $F(x,y,u,v)=G(x,y,u,v)=0$ 0000000000
000 $U((x 0,y 0)\subset \mathbb{R}"~2$ 0000000 $u=f(x,y), v=a(x, y)$00d O

1. $f(x_0, y_0)=u_0, g(x_0, y_0)=v_0$00 O $(x, y\in U((x_0, y_0))$ O $(x, y, f(x, y), g(x, y)\in
U(P_0)$ O $F(x y, f(x, y), 9(x, y)\equiv O\equiv G(x, y, f(x, y), 9(x, y))$
2. $u=f(x, y), v=g(x, y)$ O $U((x 0,y 0))$ 0O OO
3. %u,v$ 0 $U((x 0,y 0))$0D00ODODOOOODO
$\displaystyle\frac{\partial u} {\partial x}=-\frac{1} {J}\frac{\partial (F, G)} {\partial (x, v)}$
$\displaystyle\frac{\partial v} {\partial x}=-\frac{1} {J}\frac{\partial (F, G)}{\partial (u, x)}$
$\displaystyle\frac{\partial u}{\partial y}=-\frac{1}{J}\frac{\partial (F, G)} {\partial (y, v)}$

$\displaystyle\frac{\partial v} {\partial y}=-\frac{1} {J}\frac{\partial (F, G)}{\partial (u, y)}$

/50000000000
0000000000

$F(x, y)=0%

00 [03%y - y_0=f(x_0)(x-x_0)$

00 [0%y - y_0=-\frac{1}{f'(x_0)}(x-x_0)$%

0 0 0$F_x(x_0, y_0)(x-x_0)+F_y(x_0, y_0)(y-y _0)=0$%

O O0$F_y(x 0,y 0)(x-x_0)-F x(x 0,y 0)(y-y 0)=0%
dodoooodoodd

O O 0$\frac{x-x_0}{x'(t_0)}=\frac{y-y 0}{y'(t 0)}=\frac{z-z 0}{z'(t 0)}$

0 0 0 0$x'(t_0)(x-x_0)+y'(t_0)(y-y 0)+Z'(t 0)(z-z_0)=03
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goo

$$ \frac{x-x_0}{\left.{\frac{\partial(F, G)}{\partial(y, z)} }\right| {M 0} }=\frac{y-
y_0}{\left.{\frac{\partial(F, G)}{\partial(z, x)} }\right|_{M_0} }=\frac{z-z_0}{\left.{\frac{\partial(F,
G)}H{\partial(x, y)} }right|_{M_0}} $$

good

$$ (x-x_O)\left.{\frac{\partial(F, G)}{\partial(y, z)} H\right| {M_0}+(y-y_O)\left.{\frac{\partial(F,
G)}{\partial(z, x)} }\right| {M_0}+(z-z_0){\left.{\frac{\partial(F, G)} {\partial(x, y)} }\right| {M _0}}=0
$$

guooooboobood

$F(x,y, 2)=0%

goon

$F x(x 0,y 0,z 0)(x-x_ 0)+F y(x 0,y 0,z 0)(y-y 0)+F z(x 0,y 0,z 0)(z-z_0)=0%
gggd

$\displaystyle\frac{x-x_0}{F x(x 0,y 0, z 0)}=\frac{y-y 0}{F y(x 0,y 0,z 0)}=\frac{z-
z 0}{F_z(x 0,y 0,z 0)}$

ool

goooon

ug

$\displaystyle\forall \boldsymbol{x}\in \mathbb{R}~n$[J0 O
$\displaystyle\boldsymbol{x}'A\boldsymbol{x}>0$00 0 $A$ 00 00O O
$\displaystyle\boldsymbol{x}'A\boldsymbol{x}>0$00 0 $A$S O OO OO OO
$\displaystyle\boldsymbol{x}'A\boldsymbol{x}>0$00 0 $A$ OO O OO0
$\displaystyle\boldsymbol{x}'A\boldsymbol{x}>0$J0 0 $A$ OO OO DO OO

goboooobod

o

$SASO D0 $\ffs 0000000000

$A$S 00 s\fff0DODOO0ODOO
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$A$ 00 $\iffa_{11}a {22}-a {12}~2<05.

O0000 Hessian [0

00 $f(x,y)$ 0 $P0$ 0 0000000000000 $A=Ff {xx}(x 0,y 0), B=f {xy}(x 0,y 0),
C=f {yy}(x 0,y 0)$00 O $$H_f(P_0)=\left|\begin{matrix}A&B\\B&C\end{ matrix}\right|$$ 00O O
Hessian 0 O O

guoooooon

$z=f(x,y)$ 0 $(x 0,y 0)$ 0000000000000 0000 $(x y)$0

00 $f(x, yNef(x 0,y 0)$00 0000 $(x 0,y 0)$ 00000 OO $f(x, y)\gef(x 0,y 0)$00 00 O
0 $(x 0,y 0$00000

goooobbbboon

gogg

$z=f(x,y)$ 00 $(x 0,y 0)$ 0000000 $(x0,y0)$00000D000ODODOOOODODOO

gobogoo

$z=f(x,y)$ 00 $P.O(x 0,y 0)$ 00 000000000000 $P 0SS0 $fs 00000
$H (P 0)$ 0O DO0O$f$ 0 $P 0$SOO DD
$H f(P.0)$ 0D O[0$f$ 0 $P 0SS DO OO

$H f(P.0)$ DO DO[$F$ 0 $P 0S 0D O D

goon

O $A=f_{xx}(x_0,y_0), B=f_{xy}(x_0, y_0), C=f_{yy}(x_0,y_0)$
$AC-B™2>0\Rightarrow$
$a<O0\Rightarrow$ O O O $, a>0\Rightarrow$ 0O O O

$AC-B™2<0\Rightarrow$ O 0O O

goog
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gogpooogooogoooogno
HessianO OO QOOQOO

HessianO OO QOoQoQOO

1570000

guooooon

0 $z=f(x, y)$ OO0 $\arphi(x,y)=0$ 00000000

00000 $L(x, y, \lambda) = f(x, y)+\lambda\varphi(x, y)=0$00 O

$$\begin{cases}L x=f x(x, y)+\lambda\varphi_x(x, y)=0\\ L y=f x(x, y)+\lambda\varphi_y(x, y)=0\\
L \lambda=\varphi(x, y)=0\end{cases}$$

OO0 $x, y,\lambda$jO O $x,y$ OO0 OO0 OO0 O0OOoO0O

goooobbbodgd

000 $\warphi_k(x_1, x_2,\ldots, x_n)=0, k=1, 2, \ldots, m(m<n)$ OO OO OO $y=f(x_1,x 2,
\ldots, x n)$ 0 OO DO

O00000000%$L(x 1, x 2)\ldots, x_n, \lambda_1, \lambda_2, \ldots, \lambda_m) = f(x_1,
x_2\ldots, x_n)+\sum\limits_{k=1}"~{mH\lambda_k\varphi_k(x_1, x_2\ldots, x_n)$

O $f$ 0 $\arphi k$ 00 $D$ 000000000 DODO $P_0(x 1~{(0)}\dots, x n~{(0)})\in D$ O O
O00D0O00000 Jacobian OO

$$\left[\begin{matrix} \frac{\partial \varphi_1}{\partial x_1} & \cdots & \frac{\partial
\varphi_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial \varphi_m}{\partial x_1} & \cdots &
\frac{\partial \varphi_m}{\partial x_n} \end{matrix}\right] $$

0000000 $m$0O00 $\lambda_17{(0)}, \lambda_27{(0)}, \Idots, \lambda_m~{(0)}$00 O
$(x_ 17{(0)}, x 27 {(0)}, \Idots, x_n~{(0)}, \lambda_1"{(0)}, \lambda_2~{(0)}, \Idots,
\Iambda_m"{(O)})$ oogooogoooogogoo

goog

1. 0000000000000000 HessianOOODODODOODODODO
2. $HL(P_0)=\left(\frac{\partial~2L} {\partial x_j\partial x_k}\right) {P_0}$[
1. $HL(P O)$ DO DOOOOODO
2. $HL(P.O)$ OO D ODOODOO
3.00000
3. 0000000000000 0000O0000O0O0/00000000O0O0000OO00OO0O
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1000000000000

gooog

0000 $P\subset\mathbb{R}"2$j0C 00O $T$ 00000
oogon

1. $\Delta_i$ 000O0O0O $P$ 00O
2. $\Delta i$ 0000000 $P$0DO0O0OO $P$T0DODODOOOODOODO $\Delta_i$

Oo0o0ooOpss { PHM$

DO0DO0OM0$S_{_PHT\ges_{_PHT)$

00 $\{s_ {PHTN\}$OOOON$\{s_{PHTN\}$ODODOOO

0 $\underline{l} _{ P}=\sup\limits_ {T}\{s_{ P}TN\}, \overline{l} { P}=\inf\limits_{T}\{S_{ P}HTN\}$
00 $0\le\underline{l}_{ P} \le\overline{I} { P}$

O $\underline{l} { P}$ 0O $P$ OO O 0O[O%\overline{l} { P}$ 0 $P$ OO O OO

0O $\underline{l} { P} =\overline{l} { P}$00 0O $P$ 00 DODO0OOCOOO0O0OODODOODO $PSOODODO

$P$ O O 0O 0O $\iff \forall \varepsilon>0, \exists T, \mathrm{s.t.}\; S_{ P}(T)-s_{ P}(T)<\varepsilon$

gooo

$\displaystyle\iint\limits_D f(x, y)\mathrm{d}\sigma = \lim\limits_{\lambda\to
ORNsum\limits_{i=1}"{n}f(\xi_i, \eta_i)\Delta\sigma_i$

goooooooon
$\displaystyle\iint\limits_{D}f(x,y)\mathrm{d}\sigma=\iint\limits_{D}f(x,y)\mathrm{d}x\mathrm{d}y
$

dgooood

$\displaystyle\mathbf{Th.\;\; 16.2.1}$
$f(x, y)$ 0 $D$ 00000 $f(x,y)$ 0 $D$ 00O O
$\displaystyle\mathbf{Th.\;\; 16.2.2}$

$f(x, y)$ O $D$ 00 0 $\iff \lim\limits_{\[T\[\to 0}S(T)=\lim\limits_{\|T\[\to 0}s(T)$[]
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$\displaystyle\mathbf{Th.\;\; 16.2.3}$

$f(x, y)$ O $D$ O O O $\iff \forall \varepsilon>0, \exists T, \mathrm{s.t.}\;\;S(t)-s(T)<\varepsilon$[]
$\displaystyle\mathbf{Th.\;\; 16.2.4}$

dodddoooooooooo

$\displaystyle\mathbf{Th.\;\; 16.2.5}$

$fix, y)$ 0O ODODODODODO0O0OO00000D0000000000000000000 $f(x,y)$ 000
gobogoo

guoooon

goo

$\displaystyle\iint\limits_{D}kf(x,y)\mathrm{d}x\mathrm{d}y=k\iint\limits_{D}f(x,y)\mathrm{d}x\m
athrm{d}y$

an

$\displaystyle\iint\limits_{D}[f(x,y)\pm g(x,
y)\mathrm{d}x\mathrm{d}y=\iint\limits_{D}f(x,y)\mathrm{d}x\mathrm{d}y\pm\iint\limits_{D}g(x,
y)\mathrm{d}x\mathrm{d}y$

googd

$\displaystyle\iint\limits_{D}f(x,y)\mathrm{d}x\mathrm{d}y=\iint\limits_{D_1}f(x,y)\mathrm{d}x\m
athrm{d}y+\iint\limits_{D_2}f(x,y)\mathrm{d}x\mathrm{d}y$

$(D=D 1\cup D 2, D 1\cap D_2=\varnothing)$

EEERERN

00 $\sigma = \iint\limits_{D}1\mathrm{d}x\mathrm{d}y =
\iint\limits_{D}\mathrm{d}x\mathrm{d}y$

goo

O $D$ O $f(x, y)\le g(x, y)$00 O

$\displaystyle\iint\limits_{D}f(x,y)\mathrm{d}x\mathrm{d}y\le
\iint\limits_{D}g(x,y)\mathrm{d}x\mathrm{d}y$

0 0 O g$\left\iint\limits_{D} {f(x,y)\mathrm{d}x\mathrm{d}y}\right|\le
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googd

0000 $D$ O $mile f(x, y)\le M$[$\sigmas$ 0 $D$ 000 OO0

$m\sigma\le \iint\limits_{D}f(x,y)\mathrm{d}x\mathrm{d}y\le M\sigma$

gooogooo

0000 $D$ 0 $f(x, y)$ OO 0%\sigmas 0 $D$ 000000 $D$ 00O DO ODO $(\xi, \eta)$ OO

$\displaystyle\iint\limits_{D}f(x,y)\mathrm{d}x\mathrm{d}y= \sigma f(\xi,\eta)$

1620000000

guoooobobboogn

oogao

$D=[a, b]\times[c,d],\; f:D\to \mathbb{R}$00 O $\forall x\in[a, b1$[$f(x, y)$ O $[c,dl$ D000 OO
00 $$1(x)=\int_c”df(x, y)\mathrm{d}y,\; x\in[a,b]$$ O $I(x)$ 00 $[a,bl$ 00000000
$$\int_a”b I(x)\mathrm{d}x$$ 00 00000000 $$\int_ a”~b\mathrm{d}x\int_c™d f(x,
y\mathrm{d}y$$

o0gao

$D=[a, b]\times[c,d],\; f:D\to \mathbb{R}$ O $D$ O O 0O O OO $\forall x\in[a, b]$0$\int_c™d f(x,
y\mathrm{d}y$ 0000000000000

$$\iint\limits_D f(x, y) \mathrm{d}\sigma=\int_a”~b\mathrm{d}x\int_c”~d f(x, y\mathrm{d}y$$

$D=[a, b]\times[c,d],\; f:D\to \mathbb{R}$ 0 $D$ 0O 000 O $\forall y\in[c, d]$0$\int_a”~b f(x,
y\mathrm{d}x$ 0000000000000

$$\iint\limits_D f(x, y) \mathrm{d}\sigma=\int_c”~d\mathrm{d}y\int_a”~b f(x, y)\mathrm{d}x$$
$f$ O $D=[a, bl\times[c,d]$ 00O O OO

$$\iint\limits_D f(x, y) \mathrm{d}\sigma=\int_c~d\mathrm{d}y\int_a~b f(x,
y)\mathrm{d}x=\int_a”~b\mathrm{d}x\int_c”~d f(x, y)\\mathrm{d}y$$
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guooobbboogd

$x$ 000 $D=\{(x,y)\mid y_1(x)\le y\le y 2(x),a\le x\le b\}$
$y$ 00O $D=\{(x,y)\mid x_1(y)\le x\le x_2(y),c\le y\le d\}$

0000000000000 000000 $x$0%y$s000000

goon

$f(x,y)$ 0 $x$ 000 $D$ 00 OOsy_1(x), y 2(x)$ O $[a, bl$ 0O 0O O

$$\iint\limits D
f(x,y)\mathrm{d}\sigma=\int_a”~b\mathrm{d}x\int_{y_1(x)}~{y_2(x)}f(x,y)\mathrm{d}y$$

$f(x,y)$ O $y$ 000 $D$ 0O O[0O$x_1(y), x 2(y)$ O $[c,dls OO DO
$$\iint\limits D
f(x,y)\mathrm{d}\sigma=\int_c~d\mathrm{d}y\int_{x_1(y)} " {x_2(y)}f(x,y)\mathrm{d}x$$

goooooobon

goobodad

gobogoooboo

googgo

$\displaystyle\mathbf{Th.\;\;}$

$fix, y)$ 00000 $D$S00O0O0O0O0O0O $T: x=x(u,v),y=y(uv)$ O $uv$ DO DO ODODOOOOOO
0000 $\Delta$s OO OODOO $xy$OOOOOOO $D$00 O $x(u, v), y(u, v)$ O $\Delta$ OO 0O O
O00oO0oOoooood $)(u, v)=\frac{\partial (x, y)}{\partial (u, v)}\neq 0, \forall (u, v)\in \Delta$[]C]

$$\iint\limits_{D}f(x, y)\mathrm{d}x\mathrm{d}y=\iint\limits_{\Delta}f(x(u, v), y(u, v))\left|)(u,
v)\right]\mathrm{d}u\mathrm{d}v$$

00000 $)=\left|\frac{\partial(x, y)}{\partial(u, v)}\right|$

O $\Deltas OO0 0O0DOOO0O0OODOOOODOOOO

googod

00 $x™24y"24000000000D0O0C0O00O0OOOOO

$$\iint\limits_{D}f(x, y)\mathrm{d}x\mathrm{d}y=\iint\limits_{\Delta}f(r\cos \theta,
nsin\theta)r\mathrm{d}r\mathrm{d}\theta$$
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$$\iint\limits_{D}f(x, y)\mathrm{d}x\mathrm{d}y=\iint\limits_{\Delta}f(ar\cos \theta,
br\sin\theta)abr\mathrm{d}r\mathrm{d}\theta$$

1630000

gd

$fix,y,2)$ 00000000000 0ODO0O0O0OO0O $v$ODOOOp$AsS OO ODOOOOO

$$\forall \varepsilon>0, \exists \delta>0, \mathrm{s.t.}\; \forall T, \|T\|<\delta\Rightarrow \left(\forall
(\xi_i, \eta_i, \zeta_i)\in V_i, \left\sum\limits_{i=1}"~{n}f(\xi_i, \eta_i, \zeta_i)\Delta V _i-
Alright|<\varepsilon\right)$$

00 $f(x,y,2)$0 $VS OO OQ$AS 00O $fs 0 $vés 00O oonon

$$A=\iiint\limits_{V}f(x, y, z)\mathrm{d}V$$

O

$$A=\iiint\limits_{V}f(x, y, z)\mathrm{d}x\mathrm{d}y\mathrm{d}z$$

goooooo

$f(x, v, 2)$ O $V=[a, b]\times[c,d]\times[e,h]$ OO OO0 O0O0O0OOOOO $(x,y)\inD, D=[a,
bI\times [c, d]$00 O O $F(y, z) =\int_ e~h f(x, y, zZ)\mathrm{d}z$ OO O O
$\iint\limits_{D}H\mathrm{d}x\mathrm{d}y\int e~h f(x, y, z)\mathrm{d}z$ O O O O

$$\iiint\limits_{V}f(x, v,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z=\iint\limits_{D}\mathrm{d}x\mathrm{d}y\int e”~h f(x, y,
z)\mathrm{d}z$$

$f(x, y, 2)$ O $V=[a, b]\times[c,d]\times[e,h]$ OO DO OO0OOOOOO0O $z\in[e, hl$g0 000
$1(z) = \iint\limits_{D} f(x, y, z)\mathrm{d}x\mathrm{d}y$ O O 0$D=[a,b]\times[c,d]$(0 $\int_ e~h
\mathrm{d}z\iint\limits_{D} f(x, y, z)\mathrm{d}x\mathrm{d}y$ OO0 OO

$\iiint\limits_{V}f(x, y, z)\mathrm{d}x\mathrm{d}y\mathrm{d}z=\int e”~h
\mathrm{d}z\iint\limits_{D} f(x, y, z)\mathrm{d}x\mathrm{d}y$$

$\iiint\limits_{V}f(x, y, z)\mathrm{d}x\mathrm{d}y\mathrm{d}z=\int_a”~b \mathrm{d}x\int_ c~d
\mathrm{d}y\int_e~h f(x, y, z)\mathrm{d}z$$

0

$\displaystyle\mathbf{Prove:}$ $$\int 0"x

https://wiki.cvbbacm.com/ Printed on 2026/01/14 04:25



2026/01/14 04:25 37/50 ooooooo20

\mathrm{d}wint_0”~vimathrm{d}u\int_ 0~ uf(t)\mathrm{d}t = \frac{1} {2 }\int 0"~ x(x-
t) " 2f(t)\mathrm{d}t$$

$\displaystyle\mathbf{Proof:}$

$$\because \int_0~vimathrm{d}u\int_0~uf(t)\mathrm{d}t=\int_ 0~v\mathrm{d}t\int t~v f(t)
\mathrm{d}u=\int 0"v (v-t) f(t) \mathrm{d}t$$ $$\therefore \int 0~x
\mathrm{d}wint_0"~vimathrm{d}u\int_0~uf(t)\mathrm{d}t = \int_0"~x \mathrm{d}w\int_ 0"v (v-t)
f(t) \mathrm{d}t$$ $$=\int_0"x \mathrm{d}t\int_t™x (v-t) f(t) \mathrm{d}v=\int_0"x
\mathrm{d}t\int_t"~x (v-t) f(t) \mathrm{d}v$$ $$=\int_ 0"~ x \mathrm{d}t\left[\frac{1}{2}(v-t)"2
f(t\right]_t~x=\frac{1}{2Hint 0" x(x-t)"~2 f(t)\mathrm{d}t $$

goooobon

goodggo

$fix,y,2)$ 000000 $v$ OO OOOOO $T: x=x(u, v, w), y=y(u, v, w), z=z(u, v, w)$00 $uvw$
OO00DO0$Vv$snOooooo $xyz$OODOOOO $V$OO O $x(u, v, w), y(u, v, w), z(u, v, w)$ O O
0000000 ¢$vsOonoooooooog $)(u, v, w)=\left\frac{\partial(x, y, z) }{\partial(u, v,

w) Hright|\neq 0, (u, v, w)\in V'$0C

$$\iiint\limits_{V}f(x, y, z)\mathrm{d}x\mathrm{d}y\mathrm{d}z=$$ $S\iiint\limits_{V'}f\left(x_{(u,
v, W)}, y {(u, v, w)}, z {(u, v, w)Hright)\left|)(u, v,
w)\right|\mathrm{d}u\mathrm{d}vimathrm{d}w$$

goobognd

$$\begin{cases} x=r\cos \theta,\\ y=r\sin \theta,\\ z=z. \end{cases}$$
Jacobian O O OO

$$)=\frac{\partial(x, y, z)}{\partial(r, \theta, z)} =\left|\begin{matrix} \cos\theta & -r\sin \theta & 0\\
\sin\theta & -r\cos \theta & 0\\ 0 & 0 & 1 \end{matrix}\right|=r$$

$\iiint\limits_{V}f(x, y, z)\mathrm{d}x\mathrm{d}y\mathrm{d}z=$$

$$\iiint\limits_{V'}\left(r\cos\theta, r\sin\theta,
z\right)r\mathrm{d}r\mathrm{d}\theta\mathrm{d}z$$

goooo

$$\begin{cases} x=n\sin \varphi \cos \theta,\\ y=nr\sin \varphi \sin \theta,\\ z=r\cos \varphi.
\end{cases}$$

Jacobian D O OO

$$)=\frac{\partial(x, y, z)}{\partial(r, \varphi, \theta) } = \left|\begin{matrix} \sin\varphi\cos\theta

&r\cos\varphi\cos\theta & -r\sin\varphi\sin\theta\\ \sin\varphi\sin\theta &r\cos\varphi\sin\theta &
r\sin\varphi\cos\theta\\ \cos\varphi & -r\sin\varphi & 0\\ \end{matrix}\right|=r"2\sin \varphi$$
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goobogoo

googod

$$\begin{cases} x=ar\sin \varphi \cos \theta,\\ y=br\sin \varphi \sin \theta,\\ z=cr\cos \varphi.
\end{cases}$$

Jacobian D O OO

$$)=\frac{\partial(x, y, z)} {\partial(r, \varphi, \theta)} =abcr”2\sin \varphi$$

le400 0000

goon

HEN

$z=z(x, y), (x, y)\in D$

g

$F(x, y, 2)=0, (X, y, Z\in V$
0000 $F,Fx, Fy, Fz$O$v$ 0000

oo ouo

EEERERN

O $\Deltas 0 Suv$ 0O O O0OO0ODOOODO

$\displaystyle\Sigma: \vec{r}=\vec{r}(u, v), (u, v)\in \Delta$

00000000000 $\wvec{r}(u, v)\in \mathbb{R}~3$[]

00 $\wec{r}=(x,y,2)$00 $()$C OO OO

$$\begin{cases} x=x(u, v)\\ y=y(u, v)\\ z=z(u, v) \end{cases}, \quad (u, v)\in \Delta $$

goobooobooood

gooo

000$z=f(x,y), (x, yNinD$00 $D$ 000 D0 OO0 OO0 O DONf(x y)$ 0 $D$ 00000000
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gg
$$S=\iint\limits_{D}\sqrt{1+f x"~2+f y~2}\mathrm{d}x\mathrm{d}y$$

O 00%$x(u, v), y(u, v), z(u, v),\; (u, vAinD$O$DS 0O O O0%$x, vy, z$ 0 $DS OO OO O OO
0 0$\frac{\partial(x,y)} {\partial(u,v)} \frac{\partial(y,z) } {\partial(u,v) } \frac{\partial(z,x) } {\partial(u,v) }$
00000000 0OO0OOn $ssonooa

$$\varDelta S=\iint\limits_{D}\sqrt{ EG-F~2}\mathrm{d}u\mathrm{d}v,$$
$$E=x u™2+y u™2+z u~2,%%

$$F=x_ux v+y uy v+z uz v,$$

$$G=x v"2+y v"24+zZ v"2.$%

goooga?d
gd

good

$$ \bar{x}=\frac{\iint\limits_{D}x\rho(x, y)\mathrm{d}\sigma}{\iint\limits_{D}\rho(x,
y)\mathrm{d}\sigma}, \bar{y}=\frac{\iint\limits_{D}y\rho(x,
y)\mathrm{d}\sigma} {\iint\limits_{D}\rho(x, y)\mathrm{d}\sigma} $$

good

$$ \bar{x}=\frac{\iiint\limits_{V}x\rho(x, y,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z}{\iiint\limits_{V}\rho(x, v,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z},$$ $$\bar{y}=\frac{\iiint\limits_{V}y\rho(x, vy,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z} {\iiint\limits_{V}\rho(x, vy,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z},$$ $$\bar{z}=\frac{\iiint\limits_{V}z\rho(x, y,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z} {\iiint\limits_{V}\rho(x, y,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z} $$

odgg
$$)=\iiint\limits_{V}r~2(x, y, z)\rho(x ,y, z)\mathrm{d}x\mathrm{d}y\mathrm{d}z$$
0O

OO0 $A(\xi, \eta, \zeta)$

$$ F=F x\vec{i}+F y\vec{j}+F z\vec{k}$$ $$F x=k\iiint\limits_{V}\frac{x-\xi}{r"~3}\rho(x, v,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z,$$ $$F y=Kk\iiint\limits_{V}\frac{y-\eta}{r~3}\rho(x, y,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z,$$ $$F z=Kk\iiint\limits_{V}\frac{z-\zeta}{r~3}\rho(x, y,
z)\mathrm{d}x\mathrm{d}y\mathrm{d}z, $$ $$r=\sqrt{(x-\xi)~2+(y-\eta)~2+(z-\zeta)"~2} $$
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7o

17100000 on

gd

$L$ 00000000000 $fix,y)$03$L$00000 $L$000O S0 O000O0O0O
$$\lim\limits_{\max \varDelta s_i\to 0}\sum\limits_{i=1}"~{n}f(\xi_i, \eta_i)\cdot\varDelta s i = A$$

0$A$0000000000000000000000 $fix,y)$0$L$00000 $A$ 000 $f(x,
y)$0000 $L4000000000000000000000

$$\int_L f(x, y) \mathrm{d}s$$
ooooooooo0ooo

$$\int_L f(x, y, z) \mathrm{d}s$$

gooo

$f(x, y)$ 000000 $L$ 000000000000 $\int_Lf(x, y)\mathrm{d}s$ O OO
HEN

goo

$$\int L \sum c_if i\mathrm{d}s = \sum c_i\int L f \mathrm{d}s$$

good

$$\int_L Amathrm{d}s=\sum\int_{L_i}f\mathrm{d}s$$

g

$L$00000000 $fix,y)$0$L$ 00000000000

$$\oint\limits_L f(x, y)\mathrm{d}s$$
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HRE
00000 $L: \begin{cases}x=\varphi(t),\\y=\psi(t),\end{cases}\;t\in[\alpha, \beta]$[$f(x, y)$ O $L$
goopooogood

$$\int_L f(x,y)\mathrm{d}s = \int \alpha”™\beta f[\varphi(t),
\psi(t)\sqrt{\varphi'~ {2} (t)+\psi'~ {\,2}(t) \mathrm{d }t$$

1720000000

gd

$LS 000000 $As0O$BS 0000000000000 $P(x,y), Qlx,y)$0$Ls 00D OO0 $LS
00000 $T$f0 00000 $\warDeltas i$00 0 0 00O $\|T\|=\max\limits_{1\le i\le n}\varDelta
s i$00 O $(\xi_i, \eta_i)\in \overline{M {i-1}M i}$00 0 O

$$\lim\limits_{\|T\|\to 0} \sum\limits_{i=1}"~{n}P(\xi_i, \eta_i)\varDelta x_i + \lim\limits_{\|T\|\to
ORNsum\limits_{i=1}"{n}Q(\xi_i,\eta_i)\varDelta y i$$

0000000 $T$0 $(\xid\eta )$ 00000000000 $P(x,y), Qlx,y)$ 00000 $L$ 00
00o0000o00O0o0o

$$\int_L P(x, y)\mathrm{d}x + Q(x, y)\mathrm{d}y$$

U

$$\int_{AB} P(x, y)\mathrm{d}x + Q(x, y)\mathrm{d}y$$
O

$$\int L P(x, y\mathrm{d}x + \int L Q(x, y)\mathrm{d}y$$
goo

$$\int_L P\mathrm{d}x+Q\mathrm{d}y$$

OO0 sso0oooooooooon

$$\oint_L P\mathrm{d}x+Q\mathrm{d}y$$

O $\vec{F}=P\vec{i}+Q\vec{j}, \mathrm{d}\vec{s}=\mathrm{d}x\vec{i}+\mathrm{d}y\vec{j}$
googad

$$\int_L \vec{F}\cdot\mathrm{d}\vec{s}$$

gooo

$P,Q$ 00000000 $Ls 000000 OOOOOOOOO
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$$\int \Gamma P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z$$

gd

ggd

$$\int_L \left(\sum c_iP_i\right)\mathrm{d}x+\left(\sum c_iQ i\right)\mathrm{d}y = \sum c_i
\left(\int_L P_i\mathrm{d}x+\int_L Q_i\mathrm{d}y\right)$$

googgo

$$\int_L P\mathrm{d}x+Q\mathrm{d}y = \sum\int_{L i} P\mathrm{d}x+Q\mathrm{d}y$$

goo

$$\int_{-L}P\mathrm{d}x+Q\mathrm{d}y=-\int L P\mathrm{d}x+Q\mathrm{d}y$$

gd

00000 $L: \begin{cases}x=\varphi(t),\\y=\psi(t),\end{cases}\;t\in[\alpha, \betal$(O O $t$ O O
00 $\alpha$ OO $\beta$ 00 0O $M(x, y)$ O $A$ OO $B$O$\varphi, \psi$ O $[\alpha, \beta]$ O O
O0O00000$f(x, y)$ 0 $Ls 0000000 0O0O0ODO0O0OO0O0O $\int L
P\mathrm{d}x+Q\mathrm{d}y$ OO OO

$$ \int_| P\mathrm{d}x+Q\mathrm{d}y =\int_{\alpha} " {\beta} \left(P(\varphi(t),
\psi(t))\varphi'(t)+Q(\varphi(t), \psi(t))\psi'(t)\right)\mathrm{d}t $$

gd

$$\int_{L} P\mathrm{d}x+Q\mathrm{d}y = \int_{L} (P\cos\alpha + Q\cos\beta)\mathrm{d}s $$

gd

gobooobboobobooobbooobbuoooboon

1730000
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17310000000000000O

0¢$D$ 00000000000 00O0O0O $D$J0DO $D$S DD OO0O0ODOODO0OODODOOOD
goodd

$D$ 000 000DOCOO00O0DOODO0O0O0ODOOO $Ds0OOO00OODOO

goobognd

17.3.2 Green O 0

ug

0000 4$D$ 00000000 $L$ 00000 $P(x,y),Qx,y)$0 ¢$D$ 0 OO O0O00OOODOOOO

$$ \iint\limits_{D}\left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial
yHright)\mathrm{d}x\mathrm{d}y = \oint_{L} P\mathrm{d}x + Q\mathrm{d}y $$

OO0 $Ls0 $D$ O 0ODOO00OODOOOOO

googd

goo

$$ \iint\limits_{D}\frac{\partial Q}{\partial x}\mathrm{d}x\mathrm{d}y = \oint L
Q\mathrm{d}y\text{OQY O O O O 0}$$ $$-\iint\limits_{D}\frac{\partial P} {\partial
yHmathrm{d}x\mathrm{d}y = \oint L P\mathrm{d}x\text{IX OO O O O} $$

ug

goouooobooooooooboo

oo ooouooo

gooogo

$$ \iint\limits_{D}\left|\begin{matrix} \frac{\partial} {\partial x} & \frac{\partial}{\partial y}\\ P & Q
\end{matrix}\right|\mathrm{d}x\mathrm{d}y= \oint\limits_{L}P\mathrm{d}x+Q\mathrm{d}y $$

17330 0O

O¢$$ 0000000000000

O$L$ 00000 $D$O DO OO0 0O0OD0OO
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HEN

$D$O0DODO$P,Q$ 0 $DS LD OOODOOO0ODOD $D$ 0000 DOO0 $A,B$QOO $DS O
0$A$0 $B$000D0DOD0O0 $L1, L2000

$\int_{L 1}P\mathrm{d}x+Q\mathrm{d}y=\int_{L 2}P\mathrm{d}x+Q\mathrm{d}y$J0 0O 000
$\int_L P\mathrm{d}x+Q\mathrm{d}y$ 0O $D$ 000 OO0 0ODO

ugd

$D$ 00000 DO0D0 $P(x,y)$0 $Q(x, y)$ 0 $D$ 000 0000000000000 OO0

0$D$ 00000000000 $L$00 $\oint L P\mathrm{d}x+Q\mathrm{d}y = 0%
0 $D$ O $\int_ L P\mathrm{d}x+Q\mathrm{d}y$ 0000 OO

O $D$ 000 $u(x, y)$0d O $\mathrm{d}u=P\mathrm{d}x+Q\mathrm{d}y$[]

0 $D$ O O $\frac{\partial P}{\partial y\equiv \frac{\partial Q}{\partial x}$[]

Wb

gooog

000 $u(x, y)$g0 O $\mathrm{d}u=P\mathrm{d}x+Q\mathrm{d}y$00 O
$P\mathrm{d}x+Q\mathrm{d}y=0$ OO OO0 OO

O $P(x,y)$0 $Q(x,y)$ 000000 $DS 00O OOODODODOO

Ooooooo $\iff \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$

1800

1810000000

gd

1. 00 $z=z(xy), (x, y)\in D$

2. 00 $F(x,y,2)=0,(x,y,zZ\inV$ O OO DO $F, F x,Fy,Fz$O ¢$v$s OO OO

3. 00O $\mathit{\Sigma}: \vec{r}=\vec{r}(u, v), (u, v)\in \varDelta$J$\vec{r}(u, v)\in
\mathbb{R}"~3$]0 O

$$ \begin{cases} x=x(u, v),\\ y=y(u, v),\\ z=z(u, v),\\ \end{cases} \quad (u, v)\in \varDelta. $$
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gd

$$ z=f(x, y), \, S = \iint\limits_{D}\sqrt{1+f~2 x+f~2_y}Hmathrm{d}x\mathrm{d}y $$
ogoood
$$ \begin{cases} x=x(u, v),\\ y=y(u, v),\\ z=z(u, v),\\ \end{cases} \quad (u, v)\in D. $$

$x,y,z$00000 $D$ 0000000000 $\frac{\partial(x, y)}{\partial(u,v)}, \frac{\partial(y,
z)}{\partial(u,v)}, \frac{\partial(z, x)}{\partial(u,v)}$ OO 00O O0O0OO00O0O $S$s 0000

$$ \Delta S=\iint\limits_{D}\sqrt{EG-F~2}\mathrm{d}u\mathrm{d}v, \,$$
$$SE=x_u™2+y u™2+z_u"2, F=x_ux_v+y_uy v+z_uz_v, G=x_ v"2+y v"2+z v"2. $$

$\displaystyle\sqrt{EG-F"2}$ 000000000

gd

$$ \iint\limits_{\Sigma}f(x, y, z)\mathrm{d}S=\lim\limits_{\|T\|\to O }\sum\limits_{i=1}"{n}
f(\xi_i,\eta i, \zeta_i)\varDelta S i $$

gd

$\displaystyle\Sigmas OO OO0 0000000 $\vec{r}=\vec{v}(u, v), (u,v)\in \varDelta$[]
00 $f(x,y,2)$ 0 $\Sigmas OO OO OO

$$ \iint\limits_{\Sigma}f(x, vy,
z)\mathrm{d}S=\iint\limits_{\varDelta}f\circ\vec{r}\left\|\vec{r} u\times

\vec{r} V\right\|\mathrm{d}u\mathrm{d}v $$

$z=g(x, y), f$ O $\Sigma$ 0O 0O O

$$ \iint\limits_{\Sigma}f(x, y, z)\mathrm{d}S=\iint\limits_{\varDelta}f(x, v,
zZ)\sgrt{1+g x"~2+g_y~ 2} \mathrm{d}u\mathrm{d}v $$

1820000000

gobogobooobobooon

0000000 $\varDelta\varPhi=\vec{v}\cdot\vec{n}\varDelta A$
00 $\wvec{v}$

000 $\wvec{n}$

CVBB ACM Team - https://wiki.cvbbacm.com/



Last
update:
2020/05/08
11:48

ud

2020-2021:teams:mian:pantw:real_analysis https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:mian:pantw:real_analysis&rev=1588909715

$$ \iint\limits_S P\mathrm{d}y\mathrm{d}z+\iint\limits_S Q\mathrm{d}z\mathrm{d}x+\iint\limits_S
R\mathrm{d}x\mathrm{d}y=$$ $$\lim\limits_{\|T\|\to
ORNsum\limits_{i=1}"~{n}P(\xi_i,\eta_i,\zeta_i)\varDelta S_{i_{yz}}+\lim\limits_{\|T\|\to
ORNsum\limits_{i=1}"{n}Q(\xi_i,\eta_i,\zeta_i)\varDelta S_{i_{zx}}+\lim\limits_{\|T\|\to
OH\sum\limits_{i=1}"{n}R(\xi_i,\eta_i,\zeta i)\varDelta S {i {xy}} $$

gd

$S\colon x=x(y, 2),$
$$\iint\limits_S P(x, y, z)\mathrm{d}y\mathrm{d}z=\pmiiint\limits_{D_{yz} }P[x(y, z), v,
z\mathrm{d}y\mathrm{d}z$$

goooonb

$z=2(x, y), (x, y)\in D$

$\cos\alpha = \frac{\mp z_x\displaystyle}{\sqrt{1+z x~2+z_ y~2}}.$

$\cos\beta = \frac{\mp z_y}{\sqrt{1l+z x~2+z y"~2}},$

\displaystyle$\cos\gamma = \frac{\pm 1} {\sqrt{14+z x~2+z y~2}}.$ \displaystyle $$
\iint\limits_{S}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}
y =\iint\limits_{S}(P\cos\alpha+Q\cos\beta+R\cos\gamma)\mathrm{d}S $$

goooon

$\displaystyle\vec{r}=\vec{r}(u, v), (u, v)\in \Delta$
$\displaystyle\vec{F}=(P, Q, R)$[]0 $S$ 0 O O

$$
\iint\limits_{S}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}
y =\pm

\iint\limits_{\varDelta}\vec{F}\circ\vec{r}\cdot(\vec{r} u\times\vec{r} v)\mathrm{d}u\mathrm{d}v
$$

18.3 Gauss (] 1 [] Stokes [0 [

Gauss [0 [

00000 %v$s 00000 oooooono $sS$s00onn $p,QR$OSVSTIDDODODOOODODO
EEERERN

$$ \iiint\limits_{V}\left(\frac{\partial P} {\partial x} +\frac{\partial Q}{\partial y}+\frac{\partial
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R} {\partial
z}right)\mathrm{d}x\mathrm{d}y\mathrm{d}z=\oiint\limits_{S}P\mathrm{d}y\mathrm{d}z+Q\ma
thrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y $$

00 $Ss 000000000000

guoooobobbooooogd

gobooobbooobbooobobooobba

goooon

$S$ 0000000000000 $\Gamma$ OO O OOODOOOOODODOD $P,Q,R$ T $S$00 DO
$\Gamma$JD O OO ODOODOOOOODOOOOO

$$ \iint\limits_{S} \left(\frac{\partial R} {\partial y}-\frac{\partial Q}{\partial
zHright)\mathrm{d}y\mathrm{d}z +\left(\frac{\partial P} {\partial z}-\frac{\partial R} {\partial
xHright)\mathrm{d}z\mathrm{d}x +\left(\frac{\partial Q} {\partial x}-\frac{\partial P} {\partial
yHright)\mathrm{d}x\mathrm{d}y$$ $$=\oint\limits_{\Gamma}
P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z $$

gooog

$$ \iint\limits_S \left|\begin{matrix} \mathrm{d}y\mathrm{d}z & \mathrm{d}z\mathrm{d}x &
\mathrm{d}x\mathrm{d}y \\\,\\ \frac{\partial} {\partial x} & \frac{\partial} {\partial y} &
\frac{\partial} {\partial z} \\,\\\ P & Q & R \end{matrix}\right| =\oint\limits_{\Gamma}
P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z $$

1840 01

gd

0Dooo
$f(x, y, 2)$

0000
$\vec{F}(x,\displaystyle y, z)=(P(x, y, z), Q(x, y, z), R(X, y, 2))$

ggd

$V\subset\imathbb{R}"~3$ 0000000 $f$ 00000

$$\mathrm{grad}\,f(\vec{p}_0) = \frac{\partial f(\vec{p}_0)}{\partial x}\vec{i}+\frac{\partial
f(\vec{p}_0)}{\partial y}\vec{j}+\frac{\partial f(\vec{p} 0)}{\partial z}\vec{k}$$
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gobogoboooooooo

Nabla O O

$$ \nabla = (\frac{\partial} {\partial x}, \frac{\partial} {\partial y}, \frac{\partial} {\partial z}) $$

1. $\nabla (cf)=c\nabla f$

2. $\nabla(f\pm g)=\nabla f\pm \nabla g$

3. $\nabla(fg)=f\nabla g+g\nabla f$

4. $\nabla(\varphi\circ f)=(\varphi' \circ f)\nabla f$

goad

$\displaystyle\vec{F}(x, y, z)=(P(x, y, z), Q(x,y,2),R(x,y,z)$ D0 DO OO $v$ D OO ODOOOOOO
good

$$D(x, y, z)=\frac{\partial P} {\partial x}+\frac{\partial Q} {\partial y}+\frac{\partial R} {\partial z}$$
O0D0000 $\wec{F}$0 $(x,y,2$ 0000000 $\mathrm{div}\;\vec{F}$[
ogooooooo

$$ \ilint\limits_{V}\mathrm{div}\;\vec{F \mathrm{d}x\mathrm{d}y\mathrm{d}z=\oiint\limits_S
\vec{F}\cdot\mathrm{d}\vec{S} $$

O0000000 $M 0$ 0000000 $\mathrm{divi\\vec{F}(M 0)$ 000000 ¢v$ OO OO0
$\displaystyle\mathrm{div}\;\vec{F}(M 0)>0$00 00 00O O
$\displaystyle\mathrm{div}\;\vec{F}(M_0)<0$0 0O OO O

O $\forall P\in V, \mathrm{div}\;\vec{F}(P)=0$]0 $\vec{F}$ 0O O OO

O0000 $\mathrm{div}\; \vec{F}=\nabla\cdot\vec{F}$

ggod

1. 000

2. $\nabla \cdot\varphi \vec{F}=\varphi \nabla \cdot \vec{F}+\vec{F}\cdot\nabla\varphi$

3. $\varphi$ O OO0 OO $\nabla\cdot\nabla\varphi=\frac{\partial~2\varphi} {\partial
x~2}+\frac{\partial~2\varphi} {\partial y~2}+\frac{\partial~2\varphi} {\partial z*~2}$

O $\nabla\cdot\nabla=\varDelta$JO Laplace O O O
0000 $f$ 00 Laplace O O JLaplacian?(]

$$ \varDelta f=\frac{\partial~2 f}{\partial x~2}+\frac{\partial~2 f}{\partial y~2}+\frac{\partial~2
f}{\partial z*2} = 0 $$

OO0 $f$0 svés0 000000
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goad

$\displaystyle\vec{F}(x, y, z)=(P(x, y, z), Q(x,y,2),R(x,y,z)$ 00000 $v$ OO OO0 OOOO
ogooog

$$ \mathrm{rot} \vec{F} = (\frac{\partial R} {\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial
P}{\partial z} - \frac{\partial R} {\partial x}, \frac{\partial Q} {\partial x} - \frac{\partial P} {\partial y})
$$

000000 $\wec{F}$0 $(x,y,2)$00000000000O0O0ODOO
goo

$$ \mathrm{rot}=\left|\begin{matrix} \vec{i} & \vec{j} & \vec{k} \\,\\ \frac{\partial}{\partial x} &
\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\,\\\ P & Q & R \end{matrix}\right| $$

ggd

$$ \mathrm{rot}\, \vec{F} = \nabla \times \vec{F} $$

gogggoogood

$$ \iint\limits_S \mathrm{rot}\\vec{F}\cdot\mathrm{d}\vec{S} = \oint\limits \Gamma
\vec{F}\cdot\mathrm{d}\vec{s} $$

U

O 0O $\varphi$ OO $\mathrm{grad}\,\varphi=\vec{F}$0 0000 $\vec{F}$ 00000

000 $v$0 000000 $\Gammas$\oint\limits_{\Gamma}\vec{F}\cdot\mathrm{d}\vec{s} = 0$[]
OO0 $\wec{F}$0O $v$ 0000 OODOO

00 $\mathrm{rot}\,\vec{F}\equiv \vec{0}$00 0 $\wec{F}$ 0 $Vv$ 00O OO DO OO

gbobooooboo

guoooobbogogd

good

O¢$v$ 0000000000000 $v$00OO0DO0O0DOO0O0O$vVSOODoooo svsooooooo
goboououobboouobboooboon

goodd

$\displaystyle\Omega\subset\mathbb{R}"~3$ OO O OO O[J$P,Q,R$ 0 $\Omegas I DO O DO O OO
O0dooo0oooooooooa

1. 00000000000 sLsgs\oint\limits {L}P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z
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=0%

2. $\Omega$ O $\int\limits_{L}P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z$ OO O OO

3. $\exists u(x, y, z),
\mathrm{s.t.}\;(\mathrm{d}u=P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z)$

4. $\frac{\partial P} {\partial y}\equiv\frac{\partial Q}{\partial x},\; \frac{\partial Q} {\partial
zH\equiv\frac{\partial R} {\partial y} \;\frac{\partial R} {\partial x}\equiv \frac{\partial
P}{\partial z}$
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