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初等数论三大定理和缩系乘法群

前言

这篇和算法没什么关系，纯粹是基础知识。

如果哪位学弟有幸进了网安，那么学完本文可以保证大二上抽代90+。虽然本文作者不是网安的（滑稽）

初等数论三大定理，指将整个初等数论框架支撑起来的三个定理，分别是Fermat-Euler（费马欧拉）定
理、Wilson（威尔逊）定理和Chinese-Residue（中国剩余）定理。

其中，FE定理说明取模意义下缩系（简化剩余系/缩剩余系）集合的乘法构成群，Wilson定理揭示了模为素
数的乘法群的结构，而CR定理阐述了怎样将群和群结合起来，即多素因子模数乘法群的结构问题。

它们三者的本质，都是解释缩系乘法群的结构问题。而研究缩系乘法群的结构，最终结论的形式是：奇素
数幂次群结构、2的幂次群结构、CR定理，三个定理作为最终的最高结论。

Fermat-Euler定理

内容

设欧拉函数$\varphi(n)$是0到n-1里与n互素的数（缩剩余系）的个数，即缩系乘法群的阶。对于缩系中任
一元素a，有：

$$a^{\varphi(n)}\equiv 1\quad \bmod n$$

特别地，当n是单个素数p的时候，$\varphi(p)$是p-1。即：（费马小定理）

$$a^{p-1}\equiv 1\quad \bmod p$$

这其实是群论里的定理。任意一个群，群里任意一个元素，自乘群的阶次，一定会回到单位元。即：元素
的阶整除群的阶。

证明也简单：对缩系所有元素同时进行乘法操作，构成缩系元素的一个置换。（也可以采用群论中陪集的
方法）

这个定理在数学题或者算法中，一般用于简化幂次。例如快速幂函数。

推广

将研究对象转移到缩系以外。在完系（完全剩余系）中，任一元素a，有相似结论：

$$a^{t+\varphi\left(\frac{n}{(a^t,n)}\right)}\equiv a^{t}\quad \bmod n$$

对于足够大的整数t成立。意思是，a本身自乘很多次后，也会落入循环中，循环节是n去除a^t与n最大公约
数的缩系元素个数的约数。

并且这个足够大的t，一般要求a与n重合的那部分素因数被“消除”干净了，即a^t这部分素因数的幂次已
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经达到或超过了n中的相应幂次。

这个证明是显然的，分素因数讨论即可。

由于欧拉函数的积性，循环节显然是$\varphi(n)$的约数。因此弱化一下就是这样：

$$a^{t+\varphi\left(n\right)}\equiv a^{t}\quad \bmod n$$

这个更方便理解和使用。

Wilson定理

内容

对于任一素数p，1到p-1的乘积，模p余-1。即：

$$(p-1)!\equiv -1\quad \bmod p$$

或写为比较常见（方便使用）的形式：

$$(n-2)!\equiv \begin{cases}1\quad \bmod n&n\ is\ prime\\0\quad \bmod n&others\end{cases}$$

等价条件，显然可以用于判定素数，像费马小定理都还有无数个特例存在。但是由于阶乘太大了，且判断
余数没有速算法，导致时间复杂度比正常因数分解还要高，所以没人选择这么做。

既然要研究缩系乘法群，那么缩系所有元素乘积自然很重要。Wilson定理说明它是-1。

证明也特别简单：数论倒数两两配对即可。只有两个无法配对的数，1和-1，因此最终结果是-1。

这个定理常用于解决剩余问题，在算法中基本不会遇到。

推广

模不是素数的时候，缩系中所有元素的乘积如何？

对于奇素数的幂次：

$$\prod\limits_{(a,p)=1}a\equiv (-1)\quad \bmod p^t$$

对于2的幂次：4以下仍然是-1，但是8以上全是1。

对于一般的整数n，情形如何？只要8不整除n，结论仍然会是-1。当8整除n的时候，情形就非常复杂了，这
需要借助中国剩余定理。

设2在n中的幂次为v，下面的不定方程有整数解x和y：

$$\frac{n}{2^v}x-2^vy=1$$

那么最终结果为：

$$\prod\limits_{(a,n)=1}a\equiv \begin{cases}\frac{n}{2^v}x+2^vy=1+2^{v+1}y\quad \bmod
n&n \equiv 0 \bmod 8\\-1\quad \bmod n&others\end{cases}$$
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中国剩余定理

很简单，不同素因子幂乘起来，对应于缩系乘法群的笛卡尔积。因此缩系乘法群的总体构成一个空间，各
个素因子的缩系乘法群互不相干，分别构成相应的维度。

当已知这个数在各个维度的坐标，想求这个数的时候，利用线性代数的知识，先求各个维度上的单位向量，
然后向量点乘即可。

单位向量的求法，就是一次不定方程。

缩系乘法群的结构

有个经典事实：群的结构与这个素数是不是2有关，当素数是2的时候群的结构会更加复杂。

模为奇素数幂

构成循环群。生成元叫做原根。

不止这类模有原根，事实上1、2、4、奇素数的幂、2倍奇素数的幂都有，也就是说这些缩系乘法群也是循
环群，而其余的模都没有。

模为2的幂

当为1、2、4的时候，仍旧是循环群。

当大于等于8的时候，变为一个循环群（元素数为这个数除以4）与{-1,1}乘法群的笛卡尔积。

著名的Klein四元群与模8的缩系乘法群同构。

离散对数

写在前面

这是一个天坑。关于离散对数的算法数不胜数，甚至是一个P与NP问题。如果未来的您能找到一个多项式
时间求解离散对数问题的算法，那么今天的加密算法将半数失效，您不仅可以凭借这个算法轻松拿到图灵
奖和菲尔兹奖，甚至可以改写世界历史。当然，如果您证明了不存在多项式时间的求解离散对数问题算法，
相当于找到了P与NP问题的有效反例，照样可以拿到图灵奖和菲尔兹奖，只是无法改写历史的进程了而已。

由于本页面不打算涉及算法，那么这部分的算法计划将于暑假再开一个页面（这是因为烤漆实在没时间）。
这里仅谈谈离散对数是怎么来的。

定义

离散对数，就来源于循环群。我们知道，原根是缩系乘法群的生成元，那么每个元素是原根的多少次幂呢？

求解幂次，就是标准的对数运算。
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我们知道，在复变函数里，指数函数是以$2\pi i$为周期的，也就是说：

$$\ln re^{i\theta}=\ln r+i\theta +2k\pi i\quad r>0 \quad k\in Z$$

这是因为，e乘上$2\pi i$就回到了乘法单位元1，和Fermat-Euler定理有着异曲同工之妙。

模n下，对于原根g，如果g的t次方等于a，那么有：

$$\mod n\quad\log_g a=t+k\varphi(n) \quad k\in Z$$

t只是对数的主值，即一个代表，一般取0到$\varphi(n)$（左闭右开）之间，以$\varphi(n)$为周期。

注意：这里的周期已经不是模数n，而是n的缩系元素个数，所以模n记号仅表示模n意义下（大范围），并
不是这个式子本身的模。

为避免混淆，这里特地记作等号，不是三横线，并将模n记号改写在了左边。

例如模13的生成元是2，那么有表格：

n mod 13 1 2 4 8 3 6 12 11 9 5 10 7
$\mod 13\quad \log_2 n$ 0 1 2 3 4 5 6 7 8 9 10 11

换底公式

更加神奇的是，如果引入取模下对数这个设定，那么换底公式是成立的，只要底一直是原根，并且除法的
意义变为模$\varphi(n)$意义下。

$$\mod n\quad\frac{\log_{g_0}⁡a}{\log_{g_0}g_1}=\log_{g_1}⁡a$$

适用范围

因为离散对数要求是循环群，需要有原根（生成元），所以适用范围是1、2、4、p^a、2p^a（p为奇素数）。

像是模2的幂（至少为8），一般对数不能直接引入，因为缩系乘法群是一个循环群与{-1,1}乘法群的笛卡尔
积，不是循环群。但是也有办法：

{-1,1}乘法群方向坐标分量：如果a为4k+1形式的数，该方向分量为1；如果a为4k+3形式的数，该方向分
量是-1。

因此，对于模2的幂（至少为8）缩系乘法群，只取它的一半，即留下4k+1形式的一半，则构成循环群，可
以引入离散对数。此时始终有固定的生成元为5。那么所有4k+1形式的整数都可以求出以5为底的对数。由
于底数都给定了，这个对数的求解甚至都可能写出固定的公式，所以不可能用于加密。

另一半4k+3形式的数怎么办？由于大背景是模2的幂（至少为8），每一个4k+3形式的数都是4k+1形式的
数乘一个-1。根据对数将乘法变为加法，问题转化为如何定义：

$$\mod 2^c\quad\log_5 (-1)\quad c>2$$

那么这个东西就很玄妙了。如果希望这个新的离散对数具有两个维度的周期，我们可以借助复数来解决这
个问题。而与此同时，我们仍旧希望换底公式是成立的。经过尝试，强行将此式定义为：

$$\mod 2^c\quad\log_5 (-1)=2^{c-3}i\quad c>3$$
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（当c为3，即模数为8的时候，定义为1+i——当然这实在没什么用，因为它同构于Klein四元群，习惯采用
别的处理方法）

例如模16，有4个“生成元”（只能跑遍半个缩系）3、5、11、13，可以列表验证换底公式（验算不妨将除
法改为计算乘法）仍然成立：

n mod 16 1 9 5 13 3 11 7 5
$\mod 16\quad \log_3 n$ 0 2 3+2i 1+2i 1 3 2+2i 2i
$\mod 16\quad \log_{11} n$ 0 2 1+2i 3+2i 3 1 2+2i 2i
$\mod 16\quad \log_5 n$ 0 2 1 3 3+2i 1+2i 2+2i 2i
$\mod 16\quad \log_{13} n$ 0 2 3 1 1+2i 3+2i 2+2i 2i

利用复平面上两个维度同时取模（取模构成矩形）意义下的除法，换底公式仍旧成立。虽然完备，只是这
么定义没什么实际用途罢了。

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:namespace:%E5%88%9D%E7%AD%89%E6%95%B0%E8%AE%BA%E4%B8%89%E5%A4%A7%E5%AE%9A%E7%90%86%E5%92%8C%E7%BC%A9%E7%B3%BB%E4%B9%98%E6%B3%95%E7%BE%A4&rev=1591030277

Last update: 2020/06/02 00:51

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:namespace:%E5%88%9D%E7%AD%89%E6%95%B0%E8%AE%BA%E4%B8%89%E5%A4%A7%E5%AE%9A%E7%90%86%E5%92%8C%E7%BC%A9%E7%B3%BB%E4%B9%98%E6%B3%95%E7%BE%A4&rev=1591030277

	初等数论三大定理和缩系乘法群
	前言
	Fermat-Euler定理
	内容
	推广

	Wilson定理
	内容
	推广

	中国剩余定理
	缩系乘法群的结构
	模为奇素数幂
	模为2的幂

	离散对数
	写在前面
	定义
	换底公式
	适用范围



