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剩余和互反律

剩余问题、互反律问题，是初等数论计划系列的最后一篇。

这一篇是前三篇的集大成者，基本上会应用到前三篇的所有知识。如果您阅读本文有困难，可以参考前三
篇的内容：

初等数论三大定理和缩系乘法群中的缩系乘法群部分。

素数幂次与p进数问题中的p进数部分。

二次域及有理逼近相关问题中的高斯整数与艾森斯坦整数部分以及二次域部分。

至此，初等数论中，除了数论函数（我还不太会）的部分，其余的部分全部成体系按线索地叙述完毕。在
算法层面，本文到二次互反律部分即已经结束了，后面的部分为较为前沿的内容，无需掌握。

写完这四篇基本上可以出版一本初等数论教科书了。

二次剩余与互反律

二次Kronecker符号

剩余符号一般分为Legendre符号、Jacobi符号和Kronecker符号，三者为包含关系，前一个是后一个的特例，
后一个是前一个的推广。勒让德符号要求下方为非分歧本原素数（二次为正奇素数），雅可比符号要求下
方为非分歧本原数（二次为正奇数），而Kronecker符号什么限制都没有。当然，绝大多数剩余都能轻易
地推广到Jacobi符号，这是为了计算互反律方便，但是推广到Kronecker符号就很困难。

高次剩余符号要加下角标3、4等等，而二次剩余符号中的下角标2可以省略。如果没有下角标，默认为二
次剩余符号。

二次克罗内克符号是一种二次剩余符号。它含有两个变元n和m，对于n和m均是完全积性的。也就是说，
如果把n分解为a个数相乘，m分解为b个数相乘，那么n与m的二次克罗内克符号可以分解为相应的ab个二
次克罗内克符号的乘积。

$$n=n_1n_2$$

$$m=m_1m_2$$

$$\left(\frac{n}{m}\right)=\left(\frac{n_1}{m_1}\right)\left(\frac{n_2}{m_1}\right)\left(\frac{n_1}{m
_2}\right)\left(\frac{n_2}{m_2}\right)$$

为了介绍初值和定律，还需要借助类似于Gauss整数中的本原数的概念。在这里要给一般的整数定义本原
数。

规定2是分歧数。本原数去掉所有的因子2之后除以4余1，而非本原数去掉所有的因子2之后除以4余3，并规
定0是本原数。具体来讲：

本原数：⋯⋯-6，-3，0，1，2，4，5，8，9，10，13，⋯⋯

非本原数：⋯⋯-5，-4，-2，-1，3，6，7，11，12，14，⋯⋯

除了0以外，两整数分类相同，乘积为本原数；分类不同，乘积为非本原数。由于-1是非本原数，整数n和-
n被分到不同类中。
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对于奇素数p，就有了它的相伴本原素数：

$$p_0=\left(\frac{-1}{p}\right)p=\begin{cases}p\quad &p\equiv 1\mod 4\ \\-p\quad &p\equiv 3\mod
4\end{cases}$$

相当于通过配正负号，将p强行转换为4k+1形式。

定义以下初值：

只要有1，值就为1。

$$\left(\frac{n}{1}\right)=\left(\frac{1}{m}\right)=1$$

在n和m都不是正负1的时候，有：

$$\left(\frac{n}{0}\right)=\left(\frac{0}{m}\right)=0$$

下方为-1的时候，用于区分负数和非负数。

$$\left(\frac{n}{-1}\right)=\begin{cases}1\quad &n\geqslant 0\\-1\quad &n<0\end{cases}$$

而上方为-1的时候，不仅要看负数或非负数，还要看m是否本原数。

当m为正本原数或负非本原数时：

$$\left(\frac{-1}{m}\right)=1$$

当m为正非本原数或负本原数时：

$$\left(\frac{-1}{m}\right)=-1$$

最后，关于2的结论，上下方是相同的。

$$\left(\frac{n}{2}\right)=\left(\frac{2}{n}\right)=\begin{cases}0\quad &n\equiv 0\mod 2\\1\quad
&n\equiv 1,7\mod 8\\-1\quad &n\equiv 3,5\mod 8\end{cases}$$

由于二次克罗内克符号不仅满足完全积性，还满足以下的两个性质，因此可以通过递归的方式简捷地计算
二次克罗内克符号。

循环律：

当m是正奇数时，固定m，n与m的二次克罗内克符号是关于n的周期为m的函数。

$$\left(\frac{n}{m}\right)=\left(\frac{n+km}{m}\right)$$

这个性质用于缩小n，通过取余数的方法，使得n落入0到m-1之间。

另一个性质是互反律，在下文的二次互反律再介绍。

Gauss引理

将奇素数p的缩系分为前后两个区间：前半个区间是1到二分之p-1，后半个区间是二分之p+1到p-1。
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用n乘前半个区间的数，有m个落到了后半个区间，则：

$$\left(\frac{n}{p}\right)={(-1)}^m$$

为了下文的证明方便，引入一个模p意义下的除2运算：

$$k/2=\begin{cases}\frac{k}{2}\quad &2|k\\\frac{k+p}{2}\quad &others\end{cases}$$

接下来再引入一个多项式h，需要借助模p意义下的除2运算：

$$h(x)=\prod_{k=1}^{\frac{p-1}{2}}(x^{p-k/2}-x^{k/2})$$

最终乘积展开后，仍旧要对多项式h的指数部分做模p操作，使得最终多项式h次数不超过p-1。

第一步，要计算多项式h在单位根处的值：

$$h(\zeta_p)=\prod_{k=1}^{\frac{p-1}{2}}({\zeta_p}^{p-k/2}-{\zeta_p}^{k/2})$$

我们发现，由于代入的自变量是p次单位根，对指数部分的模p操作不影响最终取值。并且乘积的每一项都
是纯虚数，是2i或-2i乘以对应角度的正弦值，如果规定正弦值全部取正，则它跑遍了所有的正弦值，不重
不漏。

于是将注意力集中到辐角，即统计里面出现了多少个-2i。出现-2i，当且仅当函数f落到前半个区间，即：

$$k/2<\frac{p}{2}$$

因此，-2i的个数恰好就是：前半个区间的数，有多少个乘2之后还落在前半个区间。这个东西很容易让我们
联想到这里的Gauss引理。

如果只关注-2i中的负号，即关注个数奇偶性，由于总个数p-1是偶数，因此两半区间的奇偶性应当相同。

综上，多项式h在该点的值是：

$$h(\zeta_p)=\left(\frac{2}{p}\right)i^{\frac{p-1}{2}}(2^{\frac{p-1}{2}}\prod_{k=1}^{\frac{p-1}
{2}}\sin⁡ \frac{k}{p} 2\pi)$$

分成了辐角和模长两部分。

根据p是奇素数，模8无非就只有1、3、5、7四种情况，简单讨论可以得到：

$$\left(\frac{2}{p}\right)i^{\frac{p-1}{2}}=\begin{cases}1\quad &p\equiv 1\mod 4\\i\quad
&p\equiv 3\mod 4\end{cases}$$

辐角部分就解决了。

模长部分是多少呢？首先它一定是个正实数。如果我们在复平面单位圆中观察这部分，会发现它是一大堆
弦长的乘积。我们之前见过一大堆弦长的乘积：

$$\sum_{k=0}^{p-1}x^k=\prod_{k=1}^{p-1}(x-{\zeta_p}^k)$$

在式中，代入x等于1，并取模长。那么，等式左边是p，右边是p-1条弦长的乘积。我们要求的模长部分，
弦长恰好有二分之p-1条，不重不漏，因此相当于上式的一半。所以模长部分是：

$$2^{\frac{p-1}{2}}\prod_{k=1}^{\frac{p-1}{2}}\sin⁡\frac{k}{p}2\pi=\sqrt{p}$$



Last
update:
2020/06/23
17:42

2020-2021:teams:namespace:
剩余和互反律

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:namespace:%E5%89%A9%E4%BD%99%E5%92%8C%E4%BA%92%E5%8F%8D%E5%BE%8B&rev=1592905359

https://wiki.cvbbacm.com/ Printed on 2026/02/02 11:33

综上：

$$h(\zeta_p)=\begin{cases}\sqrt{p}\quad &p\equiv 1\mod 4\\i\sqrt{p}\quad &p\equiv 3\mod
4\end{cases}$$

观察多项式h：

$$h(1+u)=\prod_{k=1}^{\frac{p-1}{2}}({(1+u)}^{p-k/2}-{(1+u)}^{k/2})$$

由二项式展开，在对多项式系数模p时，无论除2运算为何值，总有：

$$u^2 |({(1+u)}^{p-k/2}-{(1+u)}^{k/2}+2(k/2)u)$$

除2运算乘2会得到k本身。因此：

$$u^{\frac{p+1}{2}} |h(1+u)-u^{\frac{p-1}{2}}\prod_{k=1}^{\frac{p-1}{2}}(-k)$$

由威尔逊定理，乘积部分简化为：

$$u^{\frac{p+1}{2}} |h(1+u)+u^{\frac{p-1}{2}} \frac{1}{\frac{p-1}{2}!}$$

Gauss和

要想讲解二次互反律，首先必须讲高斯和，从其根源处讲起。

观察三角函数表：

$$\cos\frac{1}{5}2\pi+\cos\frac{4}{5}2\pi=\frac{-1+\sqrt{5}}{2}$$

$$\cos\frac{2}{5}2\pi+\cos\frac{3}{5}2\pi=\frac{-1-\sqrt{5}}{2}$$

$$\cos\frac{1}{13}2\pi+\cos\frac{3}{13}2\pi+\cos\frac{4}{13}2\pi+\cos\frac{9}{13}2\pi+\cos\frac
{10}{13}2\pi+\cos\frac{12}{13}2\pi=\frac{-1+\sqrt{13}}{2}$$

$$\cos\frac{2}{13}2\pi+\cos\frac{5}{13}2\pi+\cos\frac{6}{13}2\pi+\cos\frac{7}{13}2\pi+\cos\frac
{8}{13}2\pi+\cos\frac{11}{13}2\pi=\frac{-1-\sqrt{13}}{2}$$

$$\cos\frac{1}{17}2\pi+\cos\frac{2}{17}2\pi+\cos\frac{4}{17}2\pi+\cos\frac{8}{17}2\pi+\cos\frac
{9}{17}2\pi+\cos\frac{11}{17}2\pi+\cos\frac{15}{17}2\pi+\cos\frac{16}{17}2\pi=\frac{-1+\sqrt{
17}}{2}$$

$$\cos\frac{3}{17}2\pi+\cos\frac{5}{17}2\pi+\cos\frac{6}{17}2\pi+\cos\frac{7}{17}2\pi+\cos\frac
{10}{17}2\pi+\cos\frac{12}{17}2\pi+\cos\frac{13}{17}2\pi+\cos\frac{14}{17}2\pi=\frac{-1-
\sqrt{17}}{2}$$

我们发现，每一组有两个等式，分母为4k+1型素数，而第一行的分子全部为它的二次剩余，第二行则全
部不是。更多的不再枚举，总之全部符合这个规律。

首先，全体余弦值的和（两行等式的和）是-1。这一点非常容易。既然有了和，只需证明差就可以了。以5
为例，相当于：

$$\cos\frac{1}{5}2\pi-\cos\frac{2}{5}2\pi-\cos\frac{3}{5}2\pi+\cos\frac{4}{5}2\pi=\sqrt{5}$$
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由于规律与二次剩余相关，引入二次剩余符号（Legendre符号，上面Kronecker符号退化至下方为奇素数的
情形），并且将余弦式用单位根表示，就变成：

$$\sum_{k=1}^4\left(\frac{k}{5}\right){\zeta_5}^k=\sqrt{5}$$

很令人惊讶，等式的左端出现了高斯和。因此，这个规律的本质，就是要计算高斯和的值。

定义多项式g：

$$g(x)=\sum_{k=0}^{p-1}\left(\frac{k}{p}\right)x^k$$

引入p次单位根，高斯和就是该多项式在单位根处的值。

$$\zeta_p=e^{\frac{2\pi i}{p}}$$

$$g(\zeta_p)=\sum_{k=0}^{p-1}\left(\frac{k}{p}\right){\zeta_p}^k$$

因此高斯和是一个具体的数值。

高斯和的平方很好计算，不断地交换求和次序即可。

$$\begin{aligned}{g(\zeta_p)}^2&=\sum_{n=0}^{p-1}\sum_{m=0}^{p-1}\left(\frac{mn}{p}\right
){\zeta_p}^{m+n}\\&=\sum_{s=0}^{p-1}\sum_{m=0}^{p-1}\left(\frac{m(s-
m)}{p}\right){\zeta_p}^s\\&=\sum_{s=0}^{p-1}{\zeta_p}^s\sum_{m=1}^{p-1}\left(\frac{\frac{s}
{m}-1}{p}\right)\\&=\left(\frac{-1}{p}\right)(p-1)+\sum_{s=1}^{p-1}{\zeta_p}^s\sum_{n=0}^{p-
2}\left(\frac{n}{p}\right)\\&=\left(\frac{-1}{p}\right)p\end{aligned}$$

至此，已经知道在p为4k+1型素数时，高斯和的值要么是根号p，要么是负根号p了。然而要想证明本节开
头发现的规律，仅凭这些是不够的。我们需要将目标锁定到根号p，排除负根号p的情况才行。因此，问题
最终归结为“高斯和的符号问题”。

这是关于多项式g在x+1处取值的结论。交换求和次序：

$$g(x+1)=\sum_{k=0}^{p-1}\left(\frac{k}{p}\right){(x+1)}^k=\sum_{k=0}^{p-1}\left(\frac{k}{p
}\right)\sum_{r=0}^{p-1}C_k^rx^r=\sum_{r=0}^{p-1}\sum_{k=0}^{p-1}C_k^r\left(\frac{k}{p}\r
ight)x^r$$

约定当下标溢出的时候，组合数值为0。对于给定的r，可以把组合数看成关于k的多项式。这对于下标模p
也成立，并且上述约定0结论不变。

一个有趣的事实是，模p意义下：

$$\sum_{k=0}^{p-1}k^r=-1\quad r\equiv 0\mod p-1\ or\ 0\quad others$$

根据欧拉判别法，模p意义下：

$$\sum_{k=0}^{p-1}k^r\left(\frac{k}{p}\right)=-1\quad r\equiv\frac{p-1}{2}\mod p-1\ or\ 0\quad
others$$

那么先对组合数部分求和，消去k，最终就有：

$$x^{\frac{p+1}{2}} |g(x+1)+x^{\frac{p-1}{2}} \frac{1}{\frac{p-1}{2}!}$$

这个结论的意思是，多项式g在1+x处，低于二分之p-1次数项的系数均被p整除，二分之p-1次数项的系数
为一个阶乘的逆的相反数。
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最后，只需要证明这两个多项式是相等的，g就是h的展开。即：

$$g(x)=h(x)$$

这需要用到多项式的整除理论。首先我们已经证明了，在一个单位根处的平方相等。

$${g(\zeta_p)}^2={h(\zeta_p)}^2$$

由于两边都是整系数多项式，必然有整除关系：

$$\sum_{k=0}^{p-1}x^k |(g(x)+h(x))(g(x)-h(x))$$

左边是不可约多项式，因此右边两个因式必有一个被它整除。换句话说：

$$\sum_{k=0}^{p-1}x^k |(g(x)-h(x))$$

$$\sum_{k=0}^{p-1}x^k |(g(x)+h(x))$$

必然有一个成立。当然，由于多项式g也是p-1次，并且不等于左边，两结论有且仅有一个成立。

如果我们对多项式系数采取模p操作，有结论：

$$\sum_{k=0}^{p-1}x^k\equiv{(x-1)}^{p-1}\mod p$$

设u为x-1，即在对多项式系数模p情形下：

$$u^{p-1} |(g(1+u)-h(1+u))$$

$$u^{p-1} |(g(1+u)+h(1+u))$$

有且仅有一个成立。

上文已经证明了：

$$u^{\frac{p+1}{2}} |h(1+u)+u^{\frac{p-1}{2}} \frac{1}{\frac{p-1}{2}!}$$

$$u^{\frac{p+1}{2}} |g(1+u)+u^{\frac{p-1}{2}} \frac{1}{\frac{p-1}{2}!}$$

结合之前有且仅有一个成立的两个整除式，一路逆推，我们最终证明了：

$$u^{p-1} |(g(1+u)-h(1+u))$$

$$\sum_{k=0}^{p-1}x^k |(g(x)-h(x))$$

两多项式均不超p-1次，最终只能相等。

二次互反律

根据上面多项式g与高斯和的定义，可以证明二次互反律。对于奇素数p、q，模q意义下有：

$$\left(\frac{p_0}{q}\right)g(\zeta_p)\equiv{p_0}^{\frac{q-1}{2}}g(ζ_p)={g(\zeta_p )}^q\equiv
g({\zeta_p}^q)=g(\zeta_p)\mod q$$

这个方法也可以用于计算2的情形，即辅助定理，模p意义下：
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$$\left(\frac{2}{p}\right)\sqrt{2}≡2^{\frac{p}{2}}={((\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i)+(\
frac{\sqrt{2}}{2}-
\frac{\sqrt{2}}{2}i))}^p\equiv{(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i)}^p+{(\frac{\sqrt{2}}{2}
+\frac{\sqrt{2}}{2}i)}^p=\begin{cases}\sqrt{2}\quad &p\equiv 1,7\mod 8\\-\sqrt{2}\quad &p\equiv
3,5\mod 8\end{cases}$$

用文字叙述出来，二次互反律的完整版是这样的：

如果n和m有一个大于0，那么当且仅当n和m都是非本原数的时候，n与m位置互换需要乘-1；否则只要n
和m有一个本原数，n与m位置互换的二次克罗内克符号函数值相同。

如果n和m均小于0，那么当且仅当n和m都是非本原数的时候，n与m位置互换的二次克罗内克符号函数值相
同；否则只要n和m有一个本原数，n与m位置互换需要乘-1。

这个定律用于递归，使得从n比m小的状态开始，通过n与m交换位置，新的n比新的m大。这样就可以重复
应用循环律，将n与m都缩小至初值范围内。

可以将计算得到的一部分二次克罗内克符号的值排成表。表的第一行写n，第一列写m。

表中0的位置标蓝了，而对角线对称后不相同的元素标成了黄色，为了更加直观地看到二次互反律。

二次Hilbert符号

事实上纯数学的美感到这里顶多展示了一半，甚至可以说才刚刚开始。接下来的结论更加适合科普。如果
愿意写个算法研究一下，其实也无所谓。事实上学算法的话，看到上文的二次互反律就足够了，只是互反
律深刻的本质还没有被揭示出来，甚至到今天仍旧是纯数学的最艰深的课题之一。毕竟在Hilbert的23问中，
第6个问题就是在任意数域中证明最一般的互反律，即Artin大佬百年前解决的问题。可知，互反律是数论
的核心之一。

要想解释上文二次Kronecker符号中，为什么互反律不仅与本原数有关，还与数的正负有关，参考后文三
四次互反律只与本原数有关，这点确实令人匪夷所思。那么要想解释这个问题，就不得不提到p进数，以
及后文的Hilbert符号，还有前文中二次曲线上的整点问题一起讨论，才能解释清楚。

二次Hilbert符号中的变元是上方的a和b，范围不仅限于整数，而是要求a和b非零,并且使得a和b有意义的数。

二次Hilbert符号的值域只有1或-1。

考察这条二次曲线。

$$ax^2+by^2=1$$

这条二次曲线在实数范围有没有点？这与a和b的取值有关。因此定义Hilbert符号，看起来像是二次剩余符
号的上方变为两个的样子：

$$\left(\frac{a,b}{\infty}\right)$$

这个符号下方是无穷，表示实数范围。当a与b存在一个是非负数的时候，取值为1；仅当a和b都是负数的
时候，取值为-1。

看起来怎么这么简单？这是因为这里考察的范围是实数。下面转到p进数域，对应这个符号：
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$$\left(\frac{a,b}{p}\right)$$

同样考察同一个方程（二次曲线）。

$$ax^2+by^2=1$$

这条二次曲线在p进数范围有没有点？同样与a和b的取值有关。这时，需要将同样的a和b改写为p进数的
形式。

$$a=p^iu$$

$$b=p^jv$$

其中p的幂次i和j，要保证u和v在p进数中，小数点后没有内容，小数点前一位非0。这样的表示类似于科学
记数法，是唯一的。

于是给出一个表达式r：

$$r=\frac{{(-a)}^j}{{(-b)}^i}=\frac{{(-u)}^j}{{(-v)}^i}={(-1)}^{ij}\frac{u^j}{v^i}$$

那么二次Hilbert符号的计算就有了，直接给出结论。

当p是奇素数时：

$$\left(\frac{a,b}{p}\right)=\left(\frac{r}{p}\right)$$

等式的右端就是一般的Kronecker二次剩余符号，上方的p进数r只取最后一位，代表模p。

当p是2的时候：

$$\left(\frac{a,b}{2}\right)={(-1)}^{\frac{r^2-1}{8}+\frac{u-1}{2}\frac{v-1}{2}}$$

这里-1的指数是2进数，只取2进数最后一位，代表模2。

那么二次Hilbert符号就有如下性质，用v代表素数或无穷符号：

对称性：

$$\left(\frac{a,b}{v}\right)=\left(\frac{b,a}{v}\right)$$

完全积性：

$$\left(\frac{a,bc}{v}\right)=\left(\frac{a,b}{v}\right)\left(\frac{a,c}{v}\right)$$

化归二次剩余情况：

这里a为p进数中，小数点后没有内容而前一位非0的数。当其中含一个p的时候，无论p是奇素数还是2：

$$\left(\frac{a,p}{p}\right)=\left(\frac{a}{p}\right)$$

右边就是一般的二次剩余符号，例如二次Kronecker符号。

双可逆元情况：

对于奇素数p，如果a和b均为p进数中，小数点后没有内容而前一位非0的数，就有：
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$$\left(\frac{a,b}{p}\right)=1$$

原因很简单。式子算出r的uv部分指数ij都是0，因此r就是1。

对于2的情况是这样的，如果a和b均为2进数中，小数点后没有内容而前一位为1：

$$\left(\frac{a,b}{2}\right)$$

当且仅当a和b都模4余3的时候，值为-1，否则值为1。

到这里，与利用完全积性计算二次Hilbert符号的目标，还差最后一步。

相等数情况：

$$\left(\frac{a,a}{v}\right)=\left(\frac{a,-1}{v}\right)$$

当a就是下方的素数p的时候，代入公式得：

$$\left(\frac{p,p}{p}\right)=\left(\frac{p,-1}{p}\right)=\left(\frac{-1}{p}\right)$$

至此就可以借助完全积性来计算二次Hilbert符号了。

根据方程含义，还可以推出以下初值：

$$\left(\frac{a,1-a}{v}\right)=1$$

注意定义要求自变量非0，即a不能是0或1。

二次互反律与p进数的关系

这里是本篇最精华的部分。

由于上一部分二次Hilbert符号里面直接给出了结论，略去了证明，于是这部分的难度被大大降低了，似乎
随便写写就能写明白了。

对于方程：

$$ax^2+by^2=1$$

我们利用下方为无穷的二次Hilbert符号就可以判定它是否有实数解，当然这一步多此一举，直接正负讨论
即可。

那么，上面有没有有理解呢？结论是这样的：

对于给定的非0有理数a和b，二次曲线上有有理点，等价于首先有实数点，并且其次对于所有的p进数域中
都有点。

那么有理解的判定方法是怎样的？有下面的Hilbert乘积公式。不过先说一个显然的结论：

对于给定的非0有理数a和b，至多只有有限个p使得a和b的二次Hilbert符号值为-1。

这是因为定义中a和b非0，至多只有有限个p整除a或b，于是对于剩余的p均既不整除a、也不整除b，符号的
值就为1了。
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Hilbert乘积公式：

$$\prod_v \left(\frac{a,b}{v}\right)=1$$

乘积的范围是全体v，即v取无穷以及全体素数。

考虑完全积性的性质以及a和b的素因子分解，只需要对以下三种情形证明即可。

当a和b为相异奇素数时：

$$\left(\frac{a,b}{v}\right)=\begin{cases}\left(\frac{b}{a}\right)\quad
&v=a\\\left(\frac{a}{b}\right)\quad &v=b\\{(-1)}^{\frac{a-1}{2}\frac{b-1}{2}}\quad &v=2\\1\quad
&others\end{cases}$$

这种情况Hilbert乘积公式恰好就是二次互反律。

当a为奇素数，b为-1或2时：

$$\left(\frac{a,-1}{v}\right)=\begin{cases}\left(\frac{-1}{a}\right)\quad
&v=a\\{(-1)}^{\frac{a-1}{2}}\quad &v=2\\1\quad &others\end{cases}$$

$$\left(\frac{a,2}{v}\right)=\begin{cases}\left(\frac{2}{a}\right)\quad
&v=a\\{(-1)}^{\frac{a^2-1}{8}}\quad &v=2\\1\quad &others\end{cases}$$

这种情况Hilbert乘积公式恰好就是二次互反律的补充定律。

当a为-1，b均为-1或2时，这种情形最简单了。

$$\left(\frac{-1,-1}{v}\right)=\begin{cases}-1\quad &v=2\ or\ \infty\\1\quad &others\end{cases}$$

$$\left(\frac{-1,2}{v}\right)=1$$

这个乘积公式统一了二次互反律。它的意义就是：对于给定的非0有理数a和b，不存在有理点的p进数域加
实数域的数量是偶数。

因此验证有理点，只需验证实数域，以及除一个素数以外所有的p进数域即可。

Cipolla平方根算法

由于三次方程的解法较为复杂，开三次方根的算法并不容易。但是在这里有一种简洁有效的开平方根的算
法，它需要将研究对象进行域扩张，扩张到$Q(\sqrt{a^2-n})$上。

对于一个二次剩余n，我们想对它开平方根，即求解：

$$t^2\equiv n\mod p$$

考虑方程：

$$x^2-2ax+n=0$$

这个方程的两根之积是n。因此根据Fermat-Eular定理，两根之积的p次方应该也是n。
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$${x_1}^p{x_2}^p\equiv n\mod p$$

注意这里的两个根都未必是整数。下面分别考虑两个根单独的p次方是什么，即考虑：

$${x_1}^p\mod p$$

如果这个根本身是整数，那么根据Fermat-Eular定理，它的值应当回到这个根本身。

不是整数的情形会怎样？在扩域$Q(\sqrt{a^2-n})$当中，没有引入p分之1作为因子。因此，下面的常见
二项式展开结论应当成立：

$${(a+b)}^p\equiv a^p+b^p\mod p$$

这里的取模是对两个分量1和根号的系数取模。不妨取比较大的根x1（较小的根同理），于是：

$${x_1}^p={(a+\sqrt{a^2-n})}^p\equiv a^p+{(\sqrt{a^2-n})}^p\equiv a+{(a^2-
n)}^{\frac{p}{2}}\mod p$$

由于a是整数，根据Fermat-Eular定理，a的p次方还是a。因此关键在于后面根号部分的p次方是多少，这部
分未必满足Fermat-Eular定理。事实上，这一部分不满足Fermat-Eular定理。

根据Euler判别法，根号下的部分的半群阶次方很好计算。在是二次剩余的时候为1，否则二次非剩余的时
候为-1。即：

$${(a^2-n)}^{\frac{p-1}{2}}\equiv 1\ or\ -1\mod p$$

两边再乘一个这个数的根号就有：

$${(a^2-n)}^{\frac{p}{2}}\equiv \sqrt{a^2-n}\ or\ -\sqrt{a^2-n}\mod p$$

上文中，根是整数的情形，即根号可以被开出来，那么这里就是二次剩余，右面的根号系数为1，代回原
式可以得到p次方后不变的结果，与之前结论吻合。

但是，根不是整数的情形，对应根号下为二次非剩余，这里的同余式右端根号为负，即：

$${(\sqrt{a^2-n})}^p\equiv -\sqrt{a^2-n}\mod p$$

因此，在p次方作用下，原方程的两个根交换了位置：

$${x_1}^p\equiv a-\sqrt{a^2-n}=x_2\mod p$$

换位的前提，是根号下的数为二次非剩余，即这个根号开不出来的情形。

那么这个结论有什么用呢？我们在两边再同乘一个x1：

$${x_1}^{p+1}\equiv x_1x_2=n\mod p$$

发现p+1恰好是偶数，而右边恰好是要开方的整数n。因此最开始的开方值t就应该是：

$$t_1\equiv{x_1}^{\frac{p+1}{2}}\mod p$$

这就是Cipolla平方根算法。第一步随机出一个a，使得a的平方减n是二次非剩余。然后只需计算x1的二分
之p加1次方即可。由于二次剩余和二次非剩余恰好各占总体的一半，一般认为随机一次的a符合条件的概
率是50%。

对于四次方根的求解，可以用两次Cipolla算法来解决，也不算困难。然而对于三次方根就麻烦得多。
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高次剩余与互反律

一一映射情形的求根

这里指当素数p不是tk+1情形的时候，t次方运算在p的缩系中是一一映射。那么这种情形的求根相当容易，
甚至不需要用到上文的扩域。

这里仅举个简单的例子作为参考。对于p是3k+2情形的时候，3次方运算是一一对应。我们已知下面的n，
要求解x：

$$x^3\equiv n\mod p$$

首先根据Fermat-Eular定理，这个同余式一定是成立的：

$$x^{3k+1}\equiv 1\mod p$$

那么对n作k次方，就有：

$$n^k\equiv x^{3k}\equiv x^{-1}\mod p$$

那么再来一次数论倒数就完事了。即完整的式子是：

$$n^{3k^2}=n^{k(p-2)}\equiv x\mod p$$

其实上面的操作，就是缩系循环群里面，取对数之后，对3进行的数论倒数操作，即寻找一个逆映射。我
们看到，3乘以3k方是9k方，再减去1之后，恰好是p-1即3k+1的倍数。因此，在缩系循环群的观点下，这
样的逆映射就是跑了若干个整循环之后，恰好多跑出了一个幂次。这样类似于不定方程的思想就求解出了
逆映射。

同时也看到，当p是tk+1情形的时候，这个映射不是一一映射，那么就不能采用这种办法了。即p是3k+1
情形的时候，无法用这种办法开三次方。

Peralta算法开立方

Cipolla算法开平方是一种特别优秀的算法，时间复杂度很低。而这里写出的Peralta算法仍旧属于一种暴力
算法，比用原根与对数计算（至少根号量级）要优秀，相对Cipolla算法（对数量级）时间复杂度比较高。

它的思路是这样的。要求解：

$$x^3\equiv n\mod p$$

其中p是3k+1形式，即3次方不是一一对应，并且n是三次剩余，即满足Euler判别法：

$$n^{k}\equiv 1\mod p$$

那么对x进行待定系数。考虑全体x的整系数二次多项式：

$$y=ax^2+bx+c$$

因此记录y的时候只需记录整数三元组abc即可。利用最开始的方程关系：
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$$x^3\equiv n\mod p$$

可以对指数模3，即计算多项式的乘法之后，仍旧还是二次三项式，即y的幂还是整数三元组abc。对于这样
的多项式y也满足Fermat-Euler定理：

$$y^{p-1}\equiv 1\mod p$$

即p-1次方（3k次方）之后，整数三元组abc变为001。那么在这个多项式空间里就有三次单位根：

$$y^{k}\equiv w\mod p$$

那么w也是二次三项式，w的三次方是1，即整数三元组001。

如果随机生成一个y，即随机生成一组初始三元组abc，使得w恰好满足w的abc三元组中，a和c都是0，即：

$$w=bx$$

那么根据w的三次方是1，我们计算出的b恰好就是x的数论倒数。

进一步分析表明，这种随机生成y的方法里，最终计算出的w中a和c都是0的概率只有九分之一，即平均随
机九次才能算出一个合格的w。

当然一个优势是，这种暴力算法是可推广的，即可以轻松推广到任意次数的剩余中，只是时间复杂度会非
常高。它退化成二次的形式的时候，其实和上文的Cipolla算法比较接近，相当于Cipolla的弱化版。

三四次剩余的初步介绍

我们看到优秀的Cipolla算法的关键是，在Euler判别法中，二次非剩余的二分之p-1次方恰好回到了-1，
即-1是二次单位根。因此，在一开始考察的方程中，做p次方之后x1和x2恰好互换了位置。这是Cipolla算
法的关键。

然而，三四次剩余不是这样。问题在于在缩系乘法群当中，三四次单位根并不固定，并非像二次单位根一
样一直是-1。

解决这个问题的办法还是扩域。三四次单位根不固定的原因，是因为固定的三次单位根和四次单位根本来
就不在考察范围里。因此需要将分圆域添加进来，才能在新范围中实现固定。

之前提到的高斯整环就是四次分圆整环，艾森斯坦整环就是三次（也是六次）分圆整环。

于是在这种情形下引入三次剩余符号和四次剩余符号（Legendre符号），要求符号下方的数必须是新数域
中的非分歧本原素数（可推广至Jacobi符号，下方为不含分歧数的本原数），则总有：

$${\left(\frac{\xi}{\pi}\right)}_3=0\ or\ 1\ or\ \frac{-1+\sqrt{3}}{2} or\ \frac{-1-\sqrt{3}}{2}$$

$${\left(\frac{\xi}{\pi}\right)}_4=0\ or\ 1\ or\ -1\ or\ i\ or\ -i$$

0总代表整除（不互素），1代表是三次剩余或四次剩余，-1代表是二次剩余但不是四次剩余，其余均为非
剩余。

例如，对于3k+2型素数p，扩充根号三i之后仍为新数域中的素数，其中每个原来的整数都是三次剩余，在
新数域中由原来的一一对应变为三一对应，因为新数域中完系扩充到了p的平方个。于是三次剩余性质不
变，每一个原来的整数代入符号之后右端为1。原来的三次单位根只有1一个，现在多了复平面上的两个。

对于3k+1型素数p，扩充根号三i之后不为素数，分裂为两个共轭的新素数，原来的三次剩余性质由新素数
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继承了。这时，原来看似混乱的三次单位根在模新素数的情况下，同余于复平面上的单位根。

综上所述，在扩域后三次或四次剩余符号里面（下方未扩展至Jacobi），欧拉判别法仍然是成立的。

$${\left(\frac{\xi}{\pi}\right)}_3\equiv a^{\frac{N(\pi)-1}{3}}\mod\pi$$

$${\left(\frac{\xi}{\pi}\right)}_4\equiv a^{\frac{N(\pi)-1}{4}}\mod\pi$$

三四次互反律简介

有了前面的铺垫，这部分就简单了。

三四次互反律的主体部分特别简单：非分歧本原数可以直接颠倒。

$${\left(\frac{\xi_1}{\xi_2}\right)}_k={\left(\frac{\xi_2}{\xi_1}\right)}_k$$

这里的应用范畴是Jacobi符号。如上所见，二次互反律中的Kronecker符号的相应形式都不太一样，因此个
人感觉不太可能直接推广到相应的Kronecker符号形式。

与二次互反律一样，除了主体部分，一定还有一个辅助定理，用于处理上方是分歧数的情形。对于二次互
反律，就是上方是2的情形作为辅助定理。而三四次互反律的这部分比较复杂，就先不再给出了。

（缺了辅助定理这部分，计算可能会变得较为繁杂呢）

到更难的类域论的部分，阿廷（Artin）为每一个数域上都推广出了相应的互反律，称为阿廷互反律。这就实
在太难了，估计即使是数学系也得要博士才会研究，本科和研究生肯定不会去研究这些（所以我当然不会
喽）。

至此，有关互反律的全部内容介绍完毕。完结撒花！
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