
2026/02/02 11:54 1/5 多项式exp

CVBB ACM Team - https://wiki.cvbbacm.com/

多项式exp

OIWiki上，多项式全家桶里面有多项式exp。

exp

在多项式exp当中，调用了polyln。

long long exp_t[20005];

void polyexp(long long h[],const int n,long long f[])
{
 memset(exp_t,0,sizeof(exp_t));
 std::fill(f,f+n+n,0);
 f[0]=1;
 int t;
 for(t=2;t<=n;t<<=1)
 {
 const int t2=t<<1;
 polyln(f,t,exp_t);
 exp_t[0]=(h[0]+1-exp_t[0]+MOD)%MOD;
 long long i;
 for(i=1;i!=t;++i)
 {
 exp_t[i]=(h[i]-exp_t[i]+MOD)%MOD;
 }
 std::fill(exp_t+t,exp_t+t2,0);
 NTT(f,t2,1);
 NTT(exp_t,t2,1);
 for(i=0;i!=t2;++i)
 {
 f[i]=f[i]*exp_t[i]%MOD;
 }
 NTT(f,t2,-1);
 std::fill(f+t,f+t2,0);
 }
}

ln

在多项式ln当中，调用了polyinv，derivative和integrate。

long long ln_t[20005];

http://www.opengroup.org/onlinepubs/009695399/functions/memset.html

Last
update:
2020/11/30
14:03

2020-2021:teams:namespace:多
项式exp https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:namespace:%E5%A4%9A%E9%A1%B9%E5%BC%8Fexp&rev=1606716238

https://wiki.cvbbacm.com/ Printed on 2026/02/02 11:54

void polyln(long long h[],const int n,long long f[])
{
 memset(ln_t,0,sizeof(ln_t));
 const int t=n<<1;
 derivative(h,n,ln_t);
 std::fill(ln_t+n,ln_t+t,0);
 polyinv(h,n,f);
 NTT(ln_t,t,1);
 NTT(f,t,1);
 long long i;
 for(i=0;i!=t;++i)
 {
 ln_t[i]=ln_t[i]*f[i]%MOD;
 }
 NTT(ln_t,t,-1);
 integrate(ln_t,n,f);
}

逆

多项式求逆什么都不需要调用。

long long inv_t[20005];

void polyinv(long long h[],const int n,long long f[])
{
 memset(inv_t,0,sizeof(inv_t));
 std::fill(f,f+n+n,0);
 f[0]=QPow(h[0],MOD-2);
 int t;
 for(t=2;t<=n;t<<=1)
 {
 const int t2=t<<1;
 std::copy(h,h+t,inv_t);
 std::fill(inv_t+t,inv_t+t2,0);
 NTT(f,t2,1);
 NTT(inv_t,t2,1);
 long long i;
 for(i=0;i!=t2;++i)
 {
 f[i]=f[i]*((2LL-(f[i]*inv_t[i])%MOD+MOD)%MOD)%MOD;
 }
 NTT(f,t2,-1);
 std::fill(f+t,f+t2,0);
 }
}

http://www.opengroup.org/onlinepubs/009695399/functions/memset.html
http://www.opengroup.org/onlinepubs/009695399/functions/memset.html

2026/02/02 11:54 3/5 多项式exp

CVBB ACM Team - https://wiki.cvbbacm.com/

求导和积分

在积分中，需要提前把逆元都求出来。这里建议是通过阶乘的方法比较方便。

void derivative(long long h[],const int n,long long f[])
{
 long long i;
 for(i=1;i!=n;++i)
 {
 f[i-1]=(h[i]*i)%MOD;
 }
 f[n-1]=0;
}

void integrate(long long h[],const int n,long long f[])
{
 long long i;
 for(i=n-1;i;--i)
 {
 f[i]=(h[i-1]*((FEG[i]*GAM[i-1])%MOD))%MOD;
 }
 f[0]=0;
}

NTT

使用这个NTT板子，传入长度必须是2的幂，建议为2048。

long long rev[20005];

void NTT(long long A[],long long n,int inv)//数组A，长度n，逆变换（共轭）符号inv
{
 int bit=0;
 while((1<<bit)<n)
 {
 bit++;//根据数组长度n，确定单位根次数
 }
 long long i;
 for(i=0;i<n;i++)//初始化。rev数组存储位逆序置换
 {
 rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
 if(i<rev[i])
 {
 long long temp=A[i];
 A[i]=A[rev[i]];
 A[rev[i]]=temp;

Last
update:
2020/11/30
14:03

2020-2021:teams:namespace:多
项式exp https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:namespace:%E5%A4%9A%E9%A1%B9%E5%BC%8Fexp&rev=1606716238

https://wiki.cvbbacm.com/ Printed on 2026/02/02 11:54

 }
 }
 long long mid,j;
 for(mid=1;mid<n;mid<<=1)//mid是准备合并序列的长度的二分之一
 {
 long long now=mid<<1;//now是准备合并序列的长度
 long long wn=QPow(ROOT,(MOD-1)/now);//单位根
 if(inv==-1)
 {
 wn=QPow(wn,MOD-2);//逆变换时逆元
 }
 for(i=0;i<n;i+=now)//i是合并到了哪一位
 {
 long long w=1;
 for(j=0;j<mid;j++,w=1ll*w*wn%MOD)//蝴蝶变换
 {
 long long x=A[i+j];
 long long y=1ll*w*A[i+j+mid]%MOD;
 A[i+j]=(x+y)%MOD;
 A[i+j+mid]=(x-y+MOD)%MOD;
 }
 }
 }
 if(inv==-1)
 {
 long long p=QPow(n,MOD-2);
 for(i=0;i<n;i++)
 {
 A[i]=1LL*A[i]*p%MOD;
 }
 }
}

阶乘初始化

其实用这个也可以很方便的大量计算逆元。

long long GAM[20010];
long long FEG[20010];

void init()
{
 GAM[0]=1;
 long long i;
 for(i=1;i<20005;i++)
 {
 GAM[i]=(GAM[i-1]*i)%MOD;

2026/02/02 11:54 5/5 多项式exp

CVBB ACM Team - https://wiki.cvbbacm.com/

 }
 FEG[20004]=QPow(GAM[20004],MOD-2);
 for(i=20003;i>=0;i--)
 {
 FEG[i]=(FEG[i+1]*(i+1))%MOD;
 }
}

快速幂

是基础。这里的ROOT是原根（生成元），在NTT中用到。

const long long MOD=998244353;
const long long ROOT=3;

long long QPow(long long bas,long long t)
{
 long long ret=1;
 for(;t;t>>=1,bas=(bas*bas)%MOD)
 {
 if(t&1LL)
 {
 ret=(ret*bas)%MOD;
 }
 }
 return ret;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:namespace:%E5%A4%9A%E9%A1%B9%E5%BC%8Fexp&rev=1606716238

Last update: 2020/11/30 14:03

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:namespace:%E5%A4%9A%E9%A1%B9%E5%BC%8Fexp&rev=1606716238

	多项式exp
	exp
	ln
	逆
	求导和积分
	NTT
	阶乘初始化
	快速幂

