
2026/01/21 08:28 1/9 小型代码分析系统的实现方式

CVBB ACM Team - https://wiki.cvbbacm.com/

小型代码分析系统的实现方式

题目

一个程序中有 26 个对象，每个对象有 26 个成员指针变量。同时还有 26 个普通的指针变量。给定 n 条赋值
语句，询问在以任意顺序执行每条语句无限多次的过程中，每个指针变量可能指向的对象集合。

指针分析（Pointer analysis）是静态程序分析的基本组成部分之一，它的目的是找出在程序执行过程中通过
特定指针变量访问哪些对象。现在我们希望您对测试数据执行上下文无关指针分析。

一个程序包含26个用小写字母表示的对象，每个对象也有26个用小写字母表示的成员变量（又称字段，可
能指向某些对象的指针）。同时，程序中有26个用大写字母指定的全局指针。

程序中有四种语句。我们使用[Variable]表示指针的名称，[Field]表示成员变量的名称，[Object]表示对象。

A = x分配：指针A可以指向对象x（即可以通过A访问x）

A = B转让：指针A可以指向通过B访问的每个对象

A.f = B贮存：对于通过A访问的每个对象o，o的成员变量f可以指向通过B访问的每个对象

A = B.f装载：对于通过B访问的每个对象o，A可以指向通过o的成员变量f访问的每个对象

上下文无关指针分析假设程序的语句将以任何顺序执行足够的次数。例如，在下面两个程序中，A和B都可
以指向对象x和对象o，原因是在现实世界中，语句的确切执行顺序和执行时间很难预测。

A = o
A = x
B = A

B = A
A = x
A = o

现在，您需要对由N个语句组成的给定程序执行上下文无关指针分析，对于每个指针，输出它可以指向的
对象。

输入的第一行包含一个整数N（1≤N≤200），表示程序中的语句数。等号“=”前后只有一个空格。

以下N行中的每一行都包含一个语句。

输出应该包含26行。

在第i行中，输出第i个指针的名称（第i个大写字母），后跟冒号“：”和空格，然后按字母顺序列出可通
过该指针访问的对象。

样例

样例一：

Last
update:
2020/08/06
12:20

2020-2021:teams:namespace:
小型代码分析系统的实现方式

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:namespace:%E5%B0%8F%E5%9E%8B%E4%BB%A3%E7%A0%81%E5%88%86%E6%9E%90%E7%B3%BB%E7%BB%9F%E7%9A%84%E5%AE%9E%E7%8E%B0%E6%96%B9%E5%BC%8F&rev=1596687652

https://wiki.cvbbacm.com/ Printed on 2026/01/21 08:28

5
B.f = A
C = B.f
C = x
A = o
B = o

A: o
B: o
C: ox
D:
E:
F:
G:
H:
I:
J:
K:
L:
M:
N:
O:
P:
Q:
R:
S:
T:
U:
V:
W:
X:
Y:
Z:

样例二：

4
A = o
B.f = A
C = B.f
C = g

A: o
B:
C: g
D:
E:
F:
G:
H:

2026/01/21 08:28 3/9 小型代码分析系统的实现方式

CVBB ACM Team - https://wiki.cvbbacm.com/

I:
J:
K:
L:
M:
N:
O:
P:
Q:
R:
S:
T:
U:
V:
W:
X:
Y:
Z:

样例三：

3
A = o
B = A
A = x

A: ox
B: ox
C:
D:
E:
F:
G:
H:
I:
J:
K:
L:
M:
N:
O:
P:
Q:
R:
S:
T:
U:
V:
W:
X:
Y:

Last
update:
2020/08/06
12:20

2020-2021:teams:namespace:
小型代码分析系统的实现方式

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:namespace:%E5%B0%8F%E5%9E%8B%E4%BB%A3%E7%A0%81%E5%88%86%E6%9E%90%E7%B3%BB%E7%BB%9F%E7%9A%84%E5%AE%9E%E7%8E%B0%E6%96%B9%E5%BC%8F&rev=1596687652

https://wiki.cvbbacm.com/ Printed on 2026/01/21 08:28

Z:

题解

直接暴力求解即可。本题难点可能只在于处理读入。

这里给出一个简单的暴力框架：令 pt(x) 为指针 x 可能指向的对象集合。

Let worklist be a set
For every allocation statement A = x:
 insert x into pt(A)
 If pt(A) has been changed, add A into worklist
While worklist is not empty:
 While worklist is not empty:
 select one element X from worklist
 delete X from worklist
 For every assignment statement like Y = X:
 merge pt(X) into pt(Y)
 If pt(Y) has been changed, add Y into worklist
 For every store statement Y.f = X:
 For every object o in pt(Y):
 merge pt(X) into pt(o.f)
 For every load statement Y = X.f:
 For every object o in pt(X):
 merge pt(o.f) into pt(Y)
 If pt(Y) has been changed, add Y into worklist

样例2是说，B没法指向任何对象，是空指针。

这题的重点是，要分清对象和指针：

所有的 a, b, c, d, e, f… z 都是对象，A, B, C, …, Z 和 A.a, A.b, …, A.z 和 o.a, o.b, o.c, …o.z 这些是指针。

代码

标程的程序用了大量的assert来控制函数是否执行下去。

#include<stdio.h>
#include<assert.h>
#include<string.h>

#include<vector>
#include<set>

using namespace std;

vector<pair<int,int> > storeEdge, loadEdge, allocEdge;

2026/01/21 08:28 5/9 小型代码分析系统的实现方式

CVBB ACM Team - https://wiki.cvbbacm.com/

vector<int> assignEdge[2 * 27];

int pt[(27 + 27) * 27];

int ObjectIndex(char ch)
{
 return ch - 'a';
}

int PointerIndex(char ch)
{
 assert('A' <= ch && ch <= 'Z');
 return ch - 'A' + 26;
}

int FieldIndex(char ch)
{
 assert('a' <= ch && ch <= 'z');
 return ch - 'a' + 1;
}

int makeField(int v, int f)
{
 return f * 52 + v;
}

int makeField(char v, char f)
{
 assert(('A' <= v && v <= 'Z') || ('a' <= v && v <= 'z'));
 assert('a' <= f && f <= 'z');
 if ('a' <= v && v <= 'z') return makeField(ObjectIndex(v),
FieldIndex(f));
 return makeField(PointerIndex(v), FieldIndex(f));
}

int makeField(int v, char f)
{
 assert(0 <= v && v <= 51);
 assert('a' <= f && f <= 'z');
 return makeField(v, FieldIndex(f));
}

int getBase(int v)
{
 int base = v % 52, field = v / 52;
 assert(0 <= base && base <= 52);
 assert(1 <= field && field <= 26);
 return base;
}

int getField(int v)

http://www.opengroup.org/onlinepubs/009695399/functions/assert.html
http://www.opengroup.org/onlinepubs/009695399/functions/assert.html
http://www.opengroup.org/onlinepubs/009695399/functions/assert.html
http://www.opengroup.org/onlinepubs/009695399/functions/assert.html
http://www.opengroup.org/onlinepubs/009695399/functions/assert.html
http://www.opengroup.org/onlinepubs/009695399/functions/assert.html
http://www.opengroup.org/onlinepubs/009695399/functions/assert.html
http://www.opengroup.org/onlinepubs/009695399/functions/assert.html

Last
update:
2020/08/06
12:20

2020-2021:teams:namespace:
小型代码分析系统的实现方式

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:namespace:%E5%B0%8F%E5%9E%8B%E4%BB%A3%E7%A0%81%E5%88%86%E6%9E%90%E7%B3%BB%E7%BB%9F%E7%9A%84%E5%AE%9E%E7%8E%B0%E6%96%B9%E5%BC%8F&rev=1596687652

https://wiki.cvbbacm.com/ Printed on 2026/01/21 08:28

{
 int base = v % 52, field = v / 52;
 assert(0 <= base && base <= 52);
 assert(1 <= field && field <= 26);
 return field;
}

int checkFieldNode(const char *s)
{
 int n = strlen(s);
 assert(n == 1 || n == 3);
 if (n == 1)
 {
 return -1;
 }
 assert(s[1] == '.');
 return makeField(s[0], s[2]);
}

void propagate()
{
 set<int> worklist;
 vector<pair<int,int> >::iterator e;
 for(e=allocEdge.begin();e!=allocEdge.end();e++)
 {
 pt[e->first] |= (1 << e->second);
 worklist.insert(e->first);
 }
 while (!worklist.empty())
 {
 while (!worklist.empty())
 {
 int u = *worklist.begin();
 worklist.erase(worklist.begin());
 vector<int>::iterator v;
 for(v=assignEdge[u].begin();v!=assignEdge[u].end();v++)
 {
 if ((pt[*v] & pt[u]) != pt[u])
 {
 pt[*v] |= pt[u];
 worklist.insert(*v);
 }
 }
 }
 for(e=storeEdge.begin();e!=storeEdge.end();e++)
 {
 int p = e->second;
 int q = getBase(e->first);
 int f = getField(e->first);
 for (int i = 0; i < 26; i++)
 if ((pt[q] >> i) & 1)

http://www.opengroup.org/onlinepubs/009695399/functions/assert.html
http://www.opengroup.org/onlinepubs/009695399/functions/assert.html
http://www.opengroup.org/onlinepubs/009695399/functions/strlen.html
http://www.opengroup.org/onlinepubs/009695399/functions/assert.html
http://www.opengroup.org/onlinepubs/009695399/functions/assert.html

2026/01/21 08:28 7/9 小型代码分析系统的实现方式

CVBB ACM Team - https://wiki.cvbbacm.com/

 {
 pt[makeField(i, f)] |= pt[p];
 }
 }
 for(e=loadEdge.begin();e!=loadEdge.end();e++)
 {
 int p = getBase(e->second);
 int f = getField(e->second);
 int q = e->first;
 for (int i = 0; i < 26; i++)
 if ((pt[p] >> i) & 1)
 {
 int value = pt[makeField(i, f)];
 if ((pt[q] & value) != value)
 {
 pt[q] |= value;
 worklist.insert(q);
 }
 }
 }
 }
 for(e=allocEdge.begin();e!=allocEdge.end();e++)
 {
 assert(pt[e->second] | (e->first));
 }
 for (int i = 'A'; i <= 'Z'; i++)
 {
 int src = PointerIndex(i);
 vector<int>::iterator dst;
 for(dst=assignEdge[src].begin();dst!=assignEdge[src].end();dst++)
 {
 assert((pt[*dst] & pt[src]) == pt[src]);
 }
 }
 for(e=storeEdge.begin();e!=storeEdge.end();e++)
 {
 int dst = e->first;
 int src = e->second;
 int base = getBase(dst);
 int f = getField(dst);
 for (int i = 0; i < 26; i++)
 {
 if ((pt[base] >> i) & 1)
 {
 assert((pt[makeField(i, f)] & pt[src]) == pt[src]);
 }
 }
 }
 for(e=loadEdge.begin();e!=loadEdge.end();e++)
 {
 int dst = e->first;

http://www.opengroup.org/onlinepubs/009695399/functions/assert.html
http://www.opengroup.org/onlinepubs/009695399/functions/assert.html
http://www.opengroup.org/onlinepubs/009695399/functions/assert.html

Last
update:
2020/08/06
12:20

2020-2021:teams:namespace:
小型代码分析系统的实现方式

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:namespace:%E5%B0%8F%E5%9E%8B%E4%BB%A3%E7%A0%81%E5%88%86%E6%9E%90%E7%B3%BB%E7%BB%9F%E7%9A%84%E5%AE%9E%E7%8E%B0%E6%96%B9%E5%BC%8F&rev=1596687652

https://wiki.cvbbacm.com/ Printed on 2026/01/21 08:28

 int src = e->second;
 int base = getBase(src);
 int f = getField(src);
 for (int i = 0; i < 26; i++)
 {
 if ((pt[base] >> i) & 1)
 {
 assert((pt[makeField(i, f)] & pt[dst]) == pt[makeField(i,
f)]);
 }
 }
 }
}

void output(int x)
{
 for (int i = 0; i < 26; i++)
 {
 if ((x >> i) & 1)
 {
 printf("%c",(char)('a' + i));
 }
 }
 printf("\n");
}

int main()
{
 char receiver[10], sender[10];
 int n;
 scanf("%d", &n);
 for (int i = 1; i <= n; i++)
 {
 scanf("%s = %s", receiver, sender);
 int R = checkFieldNode(receiver);
 int G = checkFieldNode(sender);
 if (R != -1 && G != -1)
 {
 assert(0);
 }
 if (R != -1 && G == -1)
 {
 storeEdge.push_back(pair<int,int>(R, PointerIndex(sender[0])));
 }
 if (R == -1 && G != -1)
 {
 loadEdge.push_back(pair<int,int>(PointerIndex(receiver[0]),
G));
 }
 if (R == -1 && G == -1)
 {

http://www.opengroup.org/onlinepubs/009695399/functions/assert.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/scanf.html
http://www.opengroup.org/onlinepubs/009695399/functions/scanf.html
http://www.opengroup.org/onlinepubs/009695399/functions/assert.html

2026/01/21 08:28 9/9 小型代码分析系统的实现方式

CVBB ACM Team - https://wiki.cvbbacm.com/

 if (sender[0] >= 'a' && sender[0] <= 'z')
allocEdge.push_back(pair<int,int>(PointerIndex(receiver[0]),
ObjectIndex(sender[0])));
 else
 {
assignEdge[PointerIndex(sender[0])].push_back(PointerIndex(receiver[0]));
 }
 }
 }
 propagate();
 for (char i = 'A'; i <= 'Z'; i++)
 {
 printf("%c: ",i);
 for (int j = 0; j < 26; j++)
 if ((pt[PointerIndex(i)] >> j) & 1)
 {
 printf("%c",(char)(j + 'a'));
 }
 printf("\n");
 }
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:namespace:%E5%B0%8F%E5%9E%8B%E4%BB%A3%E7%A0%81%E5%88%86%E6%9E%90%E7%B3%BB%E7%BB%9F%E7%9A%84%E5%AE%9E%E7%8E%B0%E6%96%B9%E5%BC%8F&rev=1596687652

Last update: 2020/08/06 12:20

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:namespace:%E5%B0%8F%E5%9E%8B%E4%BB%A3%E7%A0%81%E5%88%86%E6%9E%90%E7%B3%BB%E7%BB%9F%E7%9A%84%E5%AE%9E%E7%8E%B0%E6%96%B9%E5%BC%8F&rev=1596687652

	小型代码分析系统的实现方式
	题目
	样例
	题解
	代码

