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素数幂次与p进数问题

记号约定

在本文中，采用习惯记号，素数p在n中的幂次记为：

$$v_p(n)$$

代表p的这个幂次恰好整除n，而比这个值更高的幂次无法整除n。由于“恰好整除”记号（双竖线）容易
和C语言“或”运算混淆，故不采用恰好整除记号。

另外一个记号也在后文出现，p进制下n的各位数字和：

$$S_p(n)$$

这个记号不一定要求p是素数，只是后文的p均为素数。

阅读本文时，希望能提前大致了解模p的缩系乘法群的相关知识。

p进数

写在前面

因为p进数的主体部分是数论一个艰深的分支，这里只阐述p进数的初始观点，不做深入研究，仅为了方便
理解后文的内容。

p进数的基础，是p进制整数。所有p进制下正整数，改写为p进数时形式不变。这部分很简单，默认所有人
都已经会了。

取模的观点

例如二进制数110110和101110。

如果我们模8的话，相当于取这两个数的最后三位，结果都为110。这也就是说，模8意义下无法区分两个数。

而模16的时候，相当于取这两个数的最后四位，分别为0110和1110。这个时候才能区分开两个数。

因此有这种感觉，模4就能区分的两个数，比模16才能区分的两个数，在二进数意义下距离更远。

p进数重新定义了两个数的距离。如果模p的a次幂才能够区分两个数，那么这两个数的距离就是1除以p的a
次幂，即写成p进数表示后从右往左第几位才开始不同。因此，p进数表示的数无法像普通实数那样排在一
条直线上，即没有通常意义的序关系。

因此，模数为素数幂次时，高幂次模数是对低幂次模数更加细化的划分。这样就理解了p进数中更靠左的
位数更小，与一般的整数理解恰好相反。

也可以这样理解：多项式除法的时候，既可以使得余式的次数越除越高，也可以使得余式的次数越除越低。
这依赖于除法的意义不同，导致除法的方向相反。
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由于越靠左的位数表示距离越近，权重越小，因此p进数下的数左边可能会无限长，但右边一定有限长，
即小数点后的位数有限。

p进数下的有理数

第一种解释，就是上述整数的除法。只是这次要求从右往左除。

类比一般的小数，这种解释也表明，p进数下的有理数，左边要么有限，要么无限循环。

因为有取模的意义，采用p进数的时候，有理数本身和它的表示一定是一一对应的，而不是像普通的p进制
存在一二对应。

例如7进制下，0.6666666⋯⋯和1表示同一个数，即每个有限小数都是一二对应，存在两种表示方法，而7进
赋值下⋯⋯6666666.0和1表示不同的数，至少在有理数范畴，实际的数与它的表示永远是一一对应的。

上面例子的⋯⋯6666666.0事实上表示-1。p进数里没有负号。

第二种解释，采用数论倒数。

例如模13意义下，无法区分1/3和9，那么有理数1/3在13进数里最后一位就是9，并且是小数点前一位。如果
想知道有理数1/3在13进赋值里倒数第二位是多少，就需要求解模169的时候3的倒数是多少，以此类推。

这两种解释完全等价。

采用p进数的时候，小数点后不为0的情况（合法p进赋值数必然有限长），就是有理数分母中存在p的情况。
例如0.1表示1/p。左边无限循环的情况，就是分母中存在非p素因子的情况，也有可能代表负数。

采用p进数方法记录的数，加减乘除的规则都与普通的整数完全相同，只是除法方向相反而已。

因此可以找一个计数方法巧妙记录有理数，例如将1/3就记录成⋯⋯10101010101等等，在数论方面的性质仍
旧保留了。

p进数下的无理数

规定，每一个右端有限，左边无限不循环的合法p进数定义一个p进数意义下的无理数。那么全体合法p进
数对应全体p进数意义下的实数。

数列的收敛：当且仅当随着p进数数列不断延伸，p进数从右往左各位逐一确定（不再改变），则p进数数列
收敛于一个p进数。

数列发散于无穷：当且仅当随着p进数数列不断延伸，p进数的右边位数不断增长，可以增长到任意位数，
则p进数数列发散于无穷。

其余情况为一般的发散（不收敛）。

定义了收敛和发散，自然所有可以收敛到的值，对应全体p进数意义下的实数。也就是说，可以用无穷的p
进数有理数数列逼近任一个p进数实数。

p进数意义下的实数与正常的实数不同，往往不存在一一对应关系。一些正常的实数可能不对应于任何p进
数意义下的实数，一些p进数意义下的实数也可能不表示任何正常实数。当然，也不保证两者一多对应的
存在，因此事实上p进数创造了新的微积分体系。
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例如熟悉的指对数计算，采用$e^x$和$\ln x$引入，计算时采用展开成无穷级数的方法。那么很多正常的
实数就没办法表示，因为两个无穷级数在p进赋值里存在收敛域（收敛域不难计算），一个普通的x在正常
实数范畴可以存在指对数，到p进数里就可能落在收敛域之外。又有可能在正常实数里负数无法计算对数
（暂不考虑复数意义下），但是将负数表示为p进数之后可能落在收敛域里，就存在对数。

后文将探讨收敛域问题。

升幂定理

总述

又叫LTE（Lifting The Exponent），现在统称升幂定理。本来是用于解决p进赋值问题的工具，但是由于它超
好用而基础，已经深入到高中竞赛之中。

由于缩系乘法群的结构不同，根据素数为奇素数或2，分为LTEP定理和LTE2定理两部分。

LTEP

这是p为奇素数的情况。

使用本定理的前提：

第一条：p整除a-b，即模p意义下无法区分a和b。

第二条：p既不整除a，也不整除b，即a与b在p进制下末位不为0。

那么，$a^n$和$b^n$距离有多近呢？即究竟要取多大的模才能区分$a^n$和$b^n$呢？下面这个公式恒
成立：

$$v_p(a^n-b^n)=v_p(a-b)+v_p(n)$$

即贡献分为两部分：原本的距离部分和指数的部分。

LTE2

这是p为2的情况。

使用本定理的前提：

条件一：a和b都是奇数。

条件二：n为偶数，或者4整除a-b。

由于群的结构不同，最终的结论也略有不同。事实上二进赋值与其他的p进赋值的性质不太一样。

$$v_2(a^n-b^n)=v_2(a-b)+v_2(a+b)+v_2(n)-1$$

贡献实际上也分为两部分：原本的距离部分和指数的部分，只是原本距离部分变复杂了。

条件二比较严格。当4不整除a-b，且n为奇数的时候，定理就不适用了，即此时无法借助本定理计
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算$v_2(a^n-b^n)$。

素数在阶乘中的幂次

一般在解析数论研究中偏爱这个式子，最早是由Gauss研究的：

$$v_p(n!)=\sum_{k=0}^{\infty}\left[\frac{n}{p^k}\right]$$

这里推荐使用更加流行而简单的公式，替代上面这个繁杂的式子。它用到了文章开头的p进制下各位数字
和：

$$v_p(n!)=\frac{n-S_p(n)}{p-1}$$

与等比数列求和公式很相似。由于涉及各位数字和，利用数学归纳法可以轻松证明。

特别地，阶乘中2的幂次是：

$$v_2(n!)=n-S_2(n)$$

p进数的指对数

定义

利用展开式定义：

$$e^x=1+x+\frac{1}{2}x^2+\frac{1}{3!}x^3+\frac{1}{4!}x^4+……$$

$$\ln x=(x-1)-\frac{1}{2}(x-1)^2+\frac{1}{3}(x-1)^3-\frac{1}{4}(x-1)^4+……$$

根据上文收敛和发散的定义，利用上面的升幂定理和素数在阶乘中的幂次，可以证得下面的结论。

p为奇素数

此时的p进数中，仅当被p整除的数可以计算指数，被p除余1的数可以计算对数，即两种运算的收敛域。

2进数

在2进数中，仅当被4整除的数可以计算指数，被4除余1的数可以计算对数。这比奇素数时要严格。

其实所有奇数均在对数收敛域内。但是全体被4除余3的数算出来的对数不满足后文的双射条件，算出的对
数值再代入指数无法得到原数，而是它的相反数——被4除余1的数。这是由于如果代入计算$\ln (-1)$，会
算出它等于0。

我们可以计算2进数下的$e^4$和$\ln 5$，进而直观了解指对数：任意指数都是$e^4$的指数，利用换底公
式可以转换成以5为底的对数，从而与前一篇缩系乘法群中以5为底的对数对比。

$e^4$的例子参见：
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OEIS A320815 Digits of the 2-adic integer exp(4).

OEIS A320814 Approximation of the 2-adic integer exp(4) up to 2^n.

$\ln 5$的例子参见：

OEIS A152228 2-adic expansion of log(5).

OEIS A321690 Approximations up to 2^n for the 2-adic integer log(5).

同样还能找到更多有趣的数列，可以在OEIS上搜索“2-adic integer”，例如$\ln -3$等等
（A321694、A321691）。

注意，无论奇素数或2的情形，e和ln2的相应p进数表示均无法计算，即落在收敛域外，找不到对应的表示。

定义的根据与意义

上面的定义依赖展开式，即只与多项式本身有关，不依赖于x的取值。因此，只用多项式理论即可证得，
这种定义满足性质：

互反性：用一个嵌套另一个，会得到1。即两种运算互逆。

乘加转换：对于任意的a和b，满足：

$$e^{a+b}=e^ae^b$$

$$\ln ab=\ln a+\ln b$$

因此指对数定义是完备的。借助公式：

$$a^b=e^{b\ln a}$$

可以定义任意二元幂运算，只要相应变量均落入指对数收敛域即可。同时借助换底公式可以计算任意二元
对数，也要求落入收敛域。

这里的指对数与之前群论的指对数有何异同？之前群论中的指对数，要求幂次（指数）是普通的整数，只
有底数和真数（幂）是取模意义下的。

这里p进数理论中的指对数，底数、指数（幂次）和幂（真数）均在p进数中。它建立了一个双射：模p
（或4）余1的乘法，与模p（或4）余0的加法之间的双射。

素数在组合数中的幂次

组合数对一个数取模的结果，往往构成分形结构，例如著名的谢尔宾斯基三角形就可以通过组合数模2得
到。

$$v_p(C_m^n)=\frac{S_p(n)+S_p(m-n)-S_p(m)}{p-1}$$

如果仔细分析，p是否整除组合数其实和上下标在p进制下减法是否需要借位有关。这就有了下面的定理。

p在组合数$C_m^n$中的幂次，恰好是p进制下m减掉n需要借位的次数。

http://oeis.org/A320815
http://oeis.org/A320814
http://oeis.org/A152228
http://oeis.org/A321690
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特别地，组合数中2的幂次是：

$$v_2(C_m^n)=S_2(n)+S_2(m-n)-S_2(m)$$

Lucas定理

不是Lucario

结合上面“素数在组合数中的幂次”一同分析。上面的部分用于计算当组合数被p整除时，一共能被多少
个p整除（仅判断模p的幂是否为0）；而这里则研究当组合数不被p整除时，模p余多少。

对于组合数，有同余式：

$$C_{m_1p+m_2}^{n_1p+n_2}\equiv C_{m_1}^{n_1}C_{m_2}^{n_2} \mod p$$

至于到算法层面，还有与中国剩余定理结合的扩展卢卡斯算法（exlucas），用于解决模p的幂的余数问题。
由于本文注重数学部分，这里不再讲解。

它的证明也不难。就以下两步，然后用到二项展开。

$${(x+1)}^{n_1p+n_2}={(x+1)}^{n_1p}{(x+1)}^{n_2}$$

$${(x+1)}^p\equiv x^p+1 \mod p$$

p进数中的平方元

首先要在p进数中引入类似于二次剩余的概念。根据p进数的定义，即取p的幂次模后能区分的程度作为p进
数右侧的数位，模p的幂中的平方元放在p进数中就变为了p进数中相应的平方元。

首先来对比一下整数、有理数和实数中的平方元：

整数的平方元是离散的，分别为0，1，4，9，⋯⋯。

有理数的平方元，就是整数平方元之比。

实数中的平方元是全体非负数，并且全体负数都是非平方元。

注意，在这里就出现了负数和非负数的区分。这一点其实很重要。

首先，p进数的书写方法与p进制数相同，但是右边有限，左边无穷，这点已经提到了。

于是，每一个p进数都可以唯一表示为p的n次方乘u的形式。其中u小数点后没有内容，并且小数点前一位
非0。

（相当于将p的因子全部提出来）

于是，p进数为平方元的充要条件为：n是偶数，并且u小数点前一位是模p的二次剩余。

这体现了p进数中的平方元具有某种聚集的特征，除了含p偶数条件以外，只与一位有效数字有关，与再左
边全没关系。
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