
2026/02/02 17:44 1/5 知识点

CVBB ACM Team - https://wiki.cvbbacm.com/

常见编程技巧

PS：除了内存池和常量数组，还搬了一些其他的小技巧。

内存池

当我们需要动态分配内存的时候，频繁使用 new/malloc 会占用大量的时间和空间，甚至生成大量的内存
碎片从而降低程序的性能，可能会使原本正确的程序 TLE/MLE。

这时候我们就需要使用到「内存池」这种技巧：在真正使用内存之前，先申请分配一定大小的内存作为备
用，当需要动态分配时则直接从备用内存中分配一块即可。

当然在大多数 OI 题当中，我们可以预先算出需要使用到的最大内存并一次性申请分配。

如申请动态分配32位有符号整数数组的代码：

inline int* newarr(int sz) {
 static int pool[maxn], *allocp = pool;
 return allocp += sz, allocp - sz;
}

线段树动态开点的代码：

inline Node* newnode() {
 static Node pool[maxn << 1], *allocp = pool - 1;
 return ++allocp;
}

常量数组

善用常量数组往往能简化代码。定义常量数组时无须指明大小，编译器会计算。 下面是两道例题

$WERTYU$（$UVa10082$）

#include<stdio.h>
char s[] = "`1234567890-=QWERTYUIOP[]\\ASDFGHJKL;'ZXCVBNM,./";
int main(){
 int i, c;
 while((c = getchar()) != EOF){
 for (i=1; s[i] && s[i]!=c;i++);
 if(s[i]) putchar(s[i-1]);
 else putchar(c);
 }
 return 0;
}

回文词（$UVa401$）

http://www.opengroup.org/onlinepubs/009695399/functions/getchar.html
http://www.opengroup.org/onlinepubs/009695399/functions/putchar.html
http://www.opengroup.org/onlinepubs/009695399/functions/putchar.html

Last
update:
2020/05/15
22:36

2020-2021:teams:namespace:sereinin:
知识点

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:namespace:sereinin:%E7%9F%A5%E8%AF%86%E7%82%B9&rev=1589553403

https://wiki.cvbbacm.com/ Printed on 2026/02/02 17:44

输入一个字符串，判断它是否为回文串以及镜像串。输入字符串保证不含数字0。（使用常量数组）

#include<stdio.h>
#include<string.h>
#include<ctype.h>
const char* rev = "A 3 HIL JM O 2TUVWXY51SE Z 8 ";
const char* msg[] = {"not a palindrome", "a regular palindrome", "a mirrored
string", "a mirrored palindrome"};

char r(char ch) {
 if(isalpha(ch)) return rev[ch - 'A'];
 return rev[ch - '0' + 25];
}

int main() {
 char s[30];
 while(scanf("%s", s) == 1) {
 int len = strlen(s);
 int p = 1, m = 1;
 for(int i = 0; i < (len+1)/2; i++) {
 if(s[i] != s[len-1-i]) p = 0;
 if(r(s[i]) != s[len-1-i]) m = 0;
 }
 printf("%s -- is %s.\n\n", s, msg[m*2+p]);
 }
 return 0;
}

对拍

有的时候我们写了一份代码，但是不知道它是不是正确的。这时候就可以用对拍的方法来进行检验或调试。

什么是对拍呢？具体而言，就是通过对比两个程序的输出来检验程序的正确性。你可以将自己程序的输出
与其他程序（打的暴力或者其他 dalao 的标程）的输出进行对比，从而判断自己的程序是否正确。

当然，对拍过程要多次进行，我们需要通过批处理的方法来实现对拍的自动化。

具体而言，我们需要一个数据生成器，两个要进行对拍的程序。

每次运行一次 数据生成器 ，将生成的数据写入输入文件，通过重定向的方法使两个程序读入数据，并将
输出写入指定文件，利用 Windows 下的 fc 命令比对文件（Linux 下为 diff 命令），从而检验程序的正确
性。

如果发现程序出错，可以直接利用刚刚生成的数据进行调试啦。

对拍程序的大致框架如下：

#include <stdio.h>
#include <stdlib.h>
int main() {
 // For Windows

http://www.opengroup.org/onlinepubs/009695399/functions/isalpha.html
http://www.opengroup.org/onlinepubs/009695399/functions/scanf.html
http://www.opengroup.org/onlinepubs/009695399/functions/strlen.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2026/02/02 17:44 3/5 知识点

CVBB ACM Team - https://wiki.cvbbacm.com/

 //对拍时不开文件输入输出
 //当然，这段程序也可以改写成批处理的形式
 while (1) {
 system("gen > test.in"); //数据生成器将生成数据写入输入文件
 system("test1.exe < test.in > a.out"); //获取程序1输出
 system("test2.exe < test.in > b.out"); //获取程序2输出
 if (system("fc a.out b.out")) {
 //该行语句比对输入输出
 // fc返回0时表示输出一致，否则表示有不同处
 system("pause"); //方便查看不同处
 return 0;
 //该输入数据已经存放在test.in文件中，可以直接利用进行调试
 }
 }
}

善用标识符进行调试

我们在本地测试的时候，往往要加入一些调试语句。要提交到 OJ 的时候，就要把他们全部删除，有些麻
烦。

我们可以通过定义标识符的方式来进行本地调试。

大致的程序框架是这样的：

#define DEBUG
#ifdef DEBUG
// do something
#endif
// or
#ifndef DEBUG
// do something
#endif

#ifdef 会检查程序中是否有通过 #define 定义的对应标识符，如果有定义，就会执行下面的内容，
#ifndef 恰恰相反，会在没有定义相应标识符的情况下执行后面的语句。

我们提交程序的时候，只需要将 #define DEBUG 一行注释掉即可。

当然，我们也可以不在程序中定义标识符，而是通过 -DDEBUG 的编译选项在编译的时候定义 DEBUG 标
识符。这样就可以在提交的时候不用修改程序了。

不少 OJ 都开启了 -DONLINE_JUDGE 这一编译选项，善用这一特性可以节约不少时间。

循环宏定义

我们写代码时，像下面这样的循环代码写得会非常多：

for (int i = 0; i < N; i++) {

http://www.opengroup.org/onlinepubs/009695399/functions/system.html
http://www.opengroup.org/onlinepubs/009695399/functions/system.html
http://www.opengroup.org/onlinepubs/009695399/functions/system.html
http://www.opengroup.org/onlinepubs/009695399/functions/system.html
http://www.opengroup.org/onlinepubs/009695399/functions/system.html

Last
update:
2020/05/15
22:36

2020-2021:teams:namespace:sereinin:
知识点

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:namespace:sereinin:%E7%9F%A5%E8%AF%86%E7%82%B9&rev=1589553403

https://wiki.cvbbacm.com/ Printed on 2026/02/02 17:44

}

为了简化这样的循环代码，我们可以使用宏定义：

#define f(x, y, z) for (int x = (y), __ = (z); x < __; ++x)

这样写循环代码时，就可以简化成 f(i, 0, N) 。例如：

// a is a STL container
f(i, 0, a.size()) { ... }

另外推荐一个比较有用的宏定义：

#define _rep(i, a, b) for (int i = (a); i <= (b); ++i)

重载运算符

重载运算符是通过对运算符的重新定义，使得其支持特定数据类型的运算操作。

有的时候，我们构造了一种新的数据类型（高精度数，矩阵），当然可以将数据类型的运算操作用函数的
形式写出来。但采用重载运算符的方式，可以让程序更为自然。

当然，重载运算符在语法上也有一些要求：

1. 重载运算符的一般形式为返回值类型 operator 运算符(参数,⋯)

2.在结构体内部重载运算符时，括号内的参数会少一个（事实上，另外一个参数是this指针，即指向当前参
数的指针，也就是说，两元运算符只需要1个参数。（在结构体外部定义时，两元运算符还是需要2个参数）

其他要求就和普通函数的要求差不多了。

举一个简单的例子：

#include <stdio.h>
struct pair_num//一个二元组类型
{
 int x,y;
 pair_num operator +(pair_num a)const //不加const会CE
 {
 pair_num res;
 res.x=x+a.x;//x事实上是this.x
 res.y=y+a.y;
 return res;
 }
 pair_num operator -(pair_num a)const
 {
 pair_num res;
 res.x=x-a.x;
 res.y=y-a.y;
 return res;

2026/02/02 17:44 5/5 知识点

CVBB ACM Team - https://wiki.cvbbacm.com/

 }
 bool operator <(pair_num a)const //sort,set等数据结构需要使用小于号
 {
 return x<a.x||(x==a.x&&y<a.y);
 }
}a,b,res;
pair_num operator *(pair_num a,pair_num b)//在结构体外部定义时，不要加const
{
 pair_num res;
 res.x=a.x*b.x;
 res.y=a.y*b.y;
 return res;
}
int main()
{
 scanf("%d%d",&a.x,&a.y);
 scanf("%d%d",&b.x,&b.y);
 res=a+b;
 printf("%d %d\n",res.x,res.y);
 res=a-b;
 printf("%d %d\n",res.x,res.y);
 res=a*b;
 printf("%d %d\n",res.x,res.y);
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:namespace:sereinin:%E7%9F%A5%E8%AF%86%E7%82%B9&rev=1589553403

Last update: 2020/05/15 22:36

http://www.opengroup.org/onlinepubs/009695399/functions/scanf.html
http://www.opengroup.org/onlinepubs/009695399/functions/scanf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:namespace:sereinin:%E7%9F%A5%E8%AF%86%E7%82%B9&rev=1589553403

	常见编程技巧
	内存池
	常量数组
	对拍
	善用标识符进行调试
	循环宏定义
	重载运算符

