
2026/01/14 04:34 1/3 线段树

CVBB ACM Team - https://wiki.cvbbacm.com/

线段树

前言

解决的问题

在线维护修改、查询区间最值、求和，可以扩充到二位线段树、三位线段树。

复杂度

一维线段树每次更新和查询的时间复杂度为$O(log{N})$

概念

二叉树的结构，每一个节点代表一个区间，每个子节点代表父结点区间的一半。 初始版本左儿子下标是父
亲下标的两倍，右儿子下标为父亲下标的两倍+1。

操作

建树

自上而下，同时更新父节点。 ``` const int maxn = 100005; int a[maxn],t[maxn«2]; a为原来区间，t为线
段树 void Pushup(int k){ 更新函数，这里是实现最大值 ，同理可以变成，最小值，区间和等

 t[k] = max(t[k<<1],t[k<<1|1]);

}

递归方式建树 build(1,1,n); void build(int k,int l,int r){ k为当前需要建立的结点，l为当前需要建立区间的
左端点，r则为右端点

 if(l == r) //左端点等于右端点，即为叶子节点，直接赋值即可
 t[k] = a[l];
 else{
 int m = l + ((r-l)>>1); //m则为中间点，左儿子的结点区间为[l,m],右儿子的结
点区间为[m+1,r]
 build(k<<1,l,m); //递归构造左儿子结点
 build(k<<1|1,m+1,r); //递归构造右儿子结点
 Pushup(k); //更新父节点
 }

} ```

Last
update:
2020/05/27
18:09

2020-2021:teams:no_morning_training:shaco:
知识点:数据结构:线段树

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:no_morning_training:shaco:%E7%9F%A5%E8%AF%86%E7%82%B9:%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84:%E7%BA%BF%E6%AE%B5%E6%A0%91&rev=1590574177

https://wiki.cvbbacm.com/ Printed on 2026/01/14 04:34

点更新

自上而下 ``` 递归方式更新 updata(p,v,1,n,1); void updata(int p,int v,int l,int r,int k){ p为下标，v为要加上
的值，l，r为结点区间，k为结点下标

 if(l == r) //左端点等于右端点，即为叶子结点，直接加上v即可
 a[k] += v,t[k] += v; //原数组和线段树数组都得到更新
 else{
 int m = l + ((r-l)>>1); //m则为中间点，左儿子的结点区间为[l,m],右儿子的结
点区间为[m+1,r]
 if(p <= m) //如果需要更新的结点在左子树区间
 updata(p,v,l,m,k<<1);
 else //如果需要更新的结点在右子树区间
 updata(p,v,m+1,r,k<<1|1);
 Pushup(k); //更新父节点的值
 }

} ```

区间查询

自上而下，只统计所查询区间的子区间，在某一个递归进程中查询到则该进程结束。 ``` 递归方式区间查询
query(L,R,1,n,1); int query(int L,int R,int l,int r,int k){ [L,R]即为要查询的区间，l，r为结点区间，k为结点下
标

 if(L <= l && r <= R) //如果当前结点的区间真包含于要查询的区间内，则返回结点信息
且不需要往下递归
 return t[k];
 else{
 Pushdown(k); /**每次都需要更新子树的Lazy标记*/
 int res = -INF; //返回值变量，根据具体线段树查询的什么而自定义
 int mid = l + ((r-l)>>1); //m则为中间点，左儿子的结点区间为[l,m],右儿子的
结点区间为[m+1,r]
 if(L <= m) //如果左子树和需要查询的区间交集非空
 res = max(res, query(L,R,l,m,k<<1));
 if(R > m) //如果右子树和需要查询的区间交集非空，注意这里不是else if，因为查询
区间可能同时和左右区间都有交集
 res = max(res, query(L,R,m+1,r,k<<1|1));

 return res; //返回当前结点得到的信息
 }

} ```

区间更新

使用lazy_tag，更新时只下放到最高一层的更新区间的子区间。查询时再更细致地下放。 ``` void
Pushdown(int k){ 更新子树的lazy值，这里是RMQ的函数，要实现区间和等则需要修改函数内容

2026/01/14 04:34 3/3 线段树

CVBB ACM Team - https://wiki.cvbbacm.com/

if(lazy[k]){ 如果有lazy标记

 lazy[k<<1] += lazy[k]; //更新左子树的lazy值
 lazy[k<<1|1] += lazy[k]; //更新右子树的lazy值
 t[k<<1] += lazy[k]; //左子树的最值加上lazy值
 t[k<<1|1] += lazy[k]; //右子树的最值加上lazy值
 lazy[k] = 0; //lazy值归0
 }

}

递归更新区间 updata(L,R,v,1,n,1); void updata(int L,int R,int v,int l,int r,int k){ [L,R]即为要更新的区间，l，
r为结点区间，k为结点下标

 if(L <= l && r <= R){ //如果当前结点的区间真包含于要更新的区间内
 lazy[k] += v; //懒惰标记
 t[k] += v; //最大值加上v之后，此区间的最大值也肯定是加v
 }
 else{
 Pushdown(k); //重难点，查询lazy标记，更新子树
 int m = l + ((r-l)>>1);
 if(L <= m) //如果左子树和需要更新的区间交集非空
 update(L,R,v,l,m,k<<1);
 if(m < R) //如果右子树和需要更新的区间交集非空
 update(L,R,v,m+1,r,k<<1|1);
 Pushup(k); //更新父节点
 }

} ```

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:no_morning_training:shaco:%E7%9F%A5%E8%AF%86%E7%82%B9:%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84:%E7%BA%BF%E6%AE%B5%E6%A0%91&rev=1590574177

Last update: 2020/05/27 18:09

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:no_morning_training:shaco:%E7%9F%A5%E8%AF%86%E7%82%B9:%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84:%E7%BA%BF%E6%AE%B5%E6%A0%91&rev=1590574177

	线段树
	前言
	解决的问题
	复杂度

	概念
	操作
	建树
	点更新
	区间查询
	区间更新

