
2026/01/14 04:35 1/5 线段树

CVBB ACM Team - https://wiki.cvbbacm.com/

线段树

前言

解决的问题

在线维护修改、查询区间最值、求和，可以扩充到二位线段树、三位线段树。

复杂度

一维线段树每次更新和查询的时间复杂度为$O(log{N})$

概念

二叉树的结构，每一个节点代表一个区间，每个子节点代表父结点区间的一半。 初始版本左儿子下标是父
亲下标的两倍，右儿子下标为父亲下标的两倍+1。

操作

建树

自上而下，同时更新父节点。

const int maxn = 100005;
int a[maxn],t[maxn<<2]; //a为原来区间，t为线段树

void Pushup(int k){ //更新函数，这里是实现最大值 ，同理可以变成，最小值，区间和
等
 t[k] = max(t[k<<1],t[k<<1|1]);
}

//递归方式建树 build(1,1,n);
void build(int k,int l,int r){ //k为当前需要建立的结点，l为当前需要建立区间的左端
点，r则为右端点
 if(l == r) //左端点等于右端点，即为叶子节点，直接赋值即可
 t[k] = a[l];
 else{
 int m = l + ((r-l)>>1); //m则为中间点，左儿子的结点区间为[l,m],右儿子的
结点区间为[m+1,r]
 build(k<<1,l,m); //递归构造左儿子结点
 build(k<<1|1,m+1,r); //递归构造右儿子结点
 Pushup(k); //更新父节点
 }

Last
update:
2020/05/27
18:14

2020-2021:teams:no_morning_training:shaco:
知识点:数据结构:线段树

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:no_morning_training:shaco:%E7%9F%A5%E8%AF%86%E7%82%B9:%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84:%E7%BA%BF%E6%AE%B5%E6%A0%91&rev=1590574470

https://wiki.cvbbacm.com/ Printed on 2026/01/14 04:35

}

点更新

自上而下

//递归方式更新 updata(p,v,1,n,1);
void updata(int p,int v,int l,int r,int k){ //p为下标，v为要加上的值，l，r为结
点区间，k为结点下标
 if(l == r) //左端点等于右端点，即为叶子结点，直接加上v即可
 a[k] += v,t[k] += v; //原数组和线段树数组都得到更新
 else{
 int m = l + ((r-l)>>1); //m则为中间点，左儿子的结点区间为[l,m],右儿子的
结点区间为[m+1,r]
 if(p <= m) //如果需要更新的结点在左子树区间
 updata(p,v,l,m,k<<1);
 else //如果需要更新的结点在右子树区间
 updata(p,v,m+1,r,k<<1|1);
 Pushup(k); //更新父节点的值
 }
}

区间查询

自上而下，只统计所查询区间的子区间，在某一个递归进程中查询到则该进程结束。

//递归方式区间查询 query(L,R,1,n,1);
int query(int L,int R,int l,int r,int k){ //[L,R]即为要查询的区间，l，r为结点
区间，k为结点下标
 if(L <= l && r <= R) //如果当前结点的区间真包含于要查询的区间内，则返回结点信
息且不需要往下递归
 return t[k];
 else{
 Pushdown(k); /**每次都需要更新子树的Lazy标记*/
 int res = -INF; //返回值变量，根据具体线段树查询的什么而自定义
 int mid = l + ((r-l)>>1); //m则为中间点，左儿子的结点区间为[l,m],右儿
子的结点区间为[m+1,r]
 if(L <= m) //如果左子树和需要查询的区间交集非空
 res = max(res, query(L,R,l,m,k<<1));
 if(R > m) //如果右子树和需要查询的区间交集非空，注意这里不是else if，因为查
询区间可能同时和左右区间都有交集
 res = max(res, query(L,R,m+1,r,k<<1|1));

 return res; //返回当前结点得到的信息
 }
}

2026/01/14 04:35 3/5 线段树

CVBB ACM Team - https://wiki.cvbbacm.com/

区间更新

使用lazy_tag，更新时只下放到最高一层的更新区间的子区间。查询时再更细致地下放。

void Pushdown(int k){ //更新子树的lazy值，这里是RMQ的函数，要实现区间和等则需要修
改函数内容
 if(lazy[k]){ //如果有lazy标记
 lazy[k<<1] += lazy[k]; //更新左子树的lazy值
 lazy[k<<1|1] += lazy[k]; //更新右子树的lazy值
 t[k<<1] += lazy[k]; //左子树的最值加上lazy值
 t[k<<1|1] += lazy[k]; //右子树的最值加上lazy值
 lazy[k] = 0; //lazy值归0
 }
}

//递归更新区间 updata(L,R,v,1,n,1);
void updata(int L,int R,int v,int l,int r,int k){ //[L,R]即为要更新的区间，l，
r为结点区间，k为结点下标
 if(L <= l && r <= R){ //如果当前结点的区间真包含于要更新的区间内
 lazy[k] += v; //懒惰标记
 t[k] += v; //最大值加上v之后，此区间的最大值也肯定是加v
 }
 else{
 Pushdown(k); //重难点，查询lazy标记，更新子树
 int m = l + ((r-l)>>1);
 if(L <= m) //如果左子树和需要更新的区间交集非空
 update(L,R,v,l,m,k<<1);
 if(m < R) //如果右子树和需要更新的区间交集非空
 update(L,R,v,m+1,r,k<<1|1);
 Pushup(k); //更新父节点
 }
}

例题

The Trip On Abandoned Railway

#include<cstdio>
#include<cstring>
#define INF 1000000007
using namespace std;
int t,n,m,d,p[100005],T[500005];
long long tag[500005][3];
void push_down(int k)
{
 tag[k<<1][0]+=tag[k][0];
 tag[k<<1][1]+=tag[k][1];

https://ac.nowcoder.com/acm/problem/13891

Last
update:
2020/05/27
18:14

2020-2021:teams:no_morning_training:shaco:
知识点:数据结构:线段树

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:no_morning_training:shaco:%E7%9F%A5%E8%AF%86%E7%82%B9:%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84:%E7%BA%BF%E6%AE%B5%E6%A0%91&rev=1590574470

https://wiki.cvbbacm.com/ Printed on 2026/01/14 04:35

 tag[k<<1][2]+=tag[k][2];
 tag[k<<1|1][0]+=tag[k][0];
 tag[k<<1|1][1]+=tag[k][1];
 tag[k<<1|1][2]+=tag[k][2];
 tag[k][0]=tag[k][1]=tag[k][2]=0;
}
void update(int L,int R,int l,int r,int k,int startup,int quota)
{
 if(l>=L&&r<=R)
 {
 tag[k][0]++;
 tag[k][1]+=startup;
 tag[k][2]+=quota;
 }
 else
 {
 push_down(k);
 int mid=(l+r)/2;
 if(L<=mid)
 update(L,R,l,mid,k<<1,startup,quota);
 if(R>mid)
 update(L,R,mid+1,r,k<<1|1,startup,quota);
 }
}
int query(int k,int target,int l,int r)
{
 if(l==r)
 {
 int ans=(T[k]+tag[k][2]%INF+((tag[k][0]*l-tag[k][1])*d)%INF)%INF;
 T[k]=tag[k][0]=tag[k][1]=tag[k][2]=0;
 return ans;
 }
 push_down(k);
 int mid=(l+r)>>1;
 if(target<=mid)
 return query(k<<1,target,l,mid);
 return query(k<<1|1,target,mid+1,r);
}
void build(int now,int l,int r)
{
 if(l==r)
 T[now]=p[l];
 else
 {
 int mid=(l+r)>>1;
 build(now<<1,l,mid);
 build(now<<1|1,mid+1,r);
 }
}
int main()
{

2026/01/14 04:35 5/5 线段树

CVBB ACM Team - https://wiki.cvbbacm.com/

 scanf("%d",&t);
 while(t--)
 {
 memset(T,0,sizeof(T));
 memset(tag,0,sizeof(tag));
 scanf("%d%d%d",&n,&m,&d);
 for(int i=1;i<=n;i++)
 scanf("%d",&p[i]);
 build(1,1,n);
 for(int i=1,op,x,y;i<=m;i++)
 {
 scanf("%d",&op);
 if(op==1)
 {
 scanf("%d%d",&x,&y);
 update(x,n,1,n,1,x,y);
 }
 else
 {
 scanf("%d",&x);
 printf("%d\n",query(1,x,1,n));
 }
 }
 }
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:no_morning_training:shaco:%E7%9F%A5%E8%AF%86%E7%82%B9:%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84:%E7%BA%BF%E6%AE%B5%E6%A0%91&rev=1590574470

Last update: 2020/05/27 18:14

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:no_morning_training:shaco:%E7%9F%A5%E8%AF%86%E7%82%B9:%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84:%E7%BA%BF%E6%AE%B5%E6%A0%91&rev=1590574470

	线段树
	前言
	解决的问题
	复杂度

	概念
	操作
	建树
	点更新
	区间查询
	区间更新

	例题

