
2026/01/14 04:19 1/6 CF #643 (div2)

CVBB ACM Team - https://wiki.cvbbacm.com/

CF #643 (div2)

A. Sequence with Digits

​ 题意： $a_{n+1} = a_n+MinDig(a_n)*MaxDig(a_n)$,Dig表示十进制表示中的最大的一个数字和最小的一
个数字。给出a_1和K求a_K。两个数字都$\Leftarrow1e18$

​ 题解：刚开始的时候没想出什么好办法，想到了如果对于其中某一项，MinDig为0，则后面都是0,但这一项
是否一定会出现呢？是否有一种构造使其永远不会出现0？不存在的，我们发现，每一项比前一项最多
大$9*9=81$，现在考虑$[1000*(a_i/1000+1),1000*(a_i/1000+1)+99]$这一段区间，显然这段区间所有的
数字都含有0这个数位，并且这段区间长度大于81，也就是说，a_n只要存在大于这个区间的值，就一定
会有一项落到这个区间内，其必含有0，所以可以直接暴力计算a_1,a_2…

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <stdio.h>
using namespace std;
typedef unsigned long long ull;
int main()
{
 int t;
 scanf("%d", &t);
 while(t--)
 {
 ull x, k;
 cin >> x >> k;
 for (int i = 2; i <= k;i++)
 {
 ull tem = x;
 ull mmin = 9, mmax = 0;
 while (tem)
 {
 ull jkl = tem % 10;
 mmin = min(mmin, jkl);
 mmax = max(mmax, jkl);
 tem /= 10;
 }
 x += mmin * mmax;
 if(mmin == 0 || mmax == 0)
 break;
 }
 cout << x << endl;
 }
 return 0;
}

Last
update:
2020/05/23
03:04

2020-2021:teams:too_low:cf643_tj_cy https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:too_low:cf643_tj_cy&rev=1590174292

https://wiki.cvbbacm.com/ Printed on 2026/01/14 04:19

B. Young Explorers

​ 题解：直接贪心，没啥好说的

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <stdio.h>
using namespace std;
const int MAX = 2e5 + 100;
int pic[MAX];
int n;
int main() {
 int T;
 scanf("%d", &T);
 while(T--)
 {
 scanf("%d", &n);
 for (int i = 1; i <= n;i++)
 scanf("%d", &pic[i]);
 sort(pic + 1, pic + 1 + n);
 int ans = 0;
 int tem = 0;
 for (int i = 1; i <= n;i++)
 {
 tem++;
 if (pic[i] == tem)
 {
 ans++;
 tem = 0;
 }
 }
 printf("%d\n", ans);
 }
 return 0;
}

C. Count Triangles

​ 题意：给定ABCD，（$\Leftarrow5e5$）,求出有多少个x,y,z可以组成一个三角
形($A\Leftarrowx\LeftarrowB\Leftarrowy\LeftarrowC\Leftarrowz\LeftarrowD$)

​ 题解：做的时候脑子不清醒，想错了，分了8类讨论。。。这题官方题解的方法非常好。 用一个大数
组A_i来表示$x+y=i$的个数，计算数组A时，可以枚举x的值，然后用前缀和的方式来计算区间加法，
然后对数组A再来一次前缀和，就能求出$x+y\Leftarrowi$的个数，最后累加C到D之间的答案即可。

#include <iostream>

2026/01/14 04:19 3/6 CF #643 (div2)

CVBB ACM Team - https://wiki.cvbbacm.com/

#include <cstdio>
#include <algorithm>
#include <stdio.h>
using namespace std;
typedef long long ll;
const int MAX = 1e6 + 20;
ll pic[MAX];
int main()
{
 int a, b, c, d;
 cin >> a >> b >> c >> d;
 for (int i = a; i <= b;i++)
 {
 pic[i + b]++;
 pic[i + c + 1]--;
 }
 for (int i = 1; i < MAX; i++)
 pic[i] += pic[i - 1];
 for (int i = 1; i < MAX; i++)
 pic[i] += pic[i - 1];
 ll ans = 0;
 for (int i = c; i <= d;i++)
 ans += pic[MAX-1] - pic[i];
 cout << ans;
}

D. Game With Array

​ 题解：这题很容易构造出来，条件放的太宽了。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <stdio.h>
using namespace std;
typedef long long ll;
int main()
{
 int n, s;
 cin >> n >> s;
 int mean = s / n;
 int lef = s - mean * n + mean;
 if (mean > 1)
 {
 cout << "YES" << endl;
 for (int i = 1; i < n;i++)
 cout << mean << ' ';
 cout << lef << endl;
 cout << 1;
 }

Last
update:
2020/05/23
03:04

2020-2021:teams:too_low:cf643_tj_cy https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:too_low:cf643_tj_cy&rev=1590174292

https://wiki.cvbbacm.com/ Printed on 2026/01/14 04:19

 else
 {
 cout << "NO" << endl;
 }
 return 0;
}

E. Restorer Distance

题意：初始有 n 根柱子，每根柱子有一个高度 h[i]，现在有三种操作：花费 A 使得某根柱子高度+1、花费
R 使得某根柱子高度-1、花费 M 使得某根柱子高度-1而另一根+1。问最少的花费，使得最终所有柱子高度
一样。

题解：如果有一个给定的h，那么最终花费很好求，只要求一个前缀和然后二分查找即可。问题在于这个h
如何去确定，官方题解给出的答案是，先假设一个h，再给h增加1，观察最终花费的变化，最终发现，最优
答案的h一定和某个柱子的砖块数量一样，或者是在均值附近，于是可以nlogn枚举答案，还有一种思路，
发现最终答案和h的大小呈二次函数关系，于是三分。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <stdio.h>
using namespace std;
typedef long long ll;
const int MAX = 1e5 + 20;
ll pic[MAX];
ll sum[MAX];
ll n, a, r, m;
ll cal(ll h)
{
 int pos = lower_bound(pic + 1, pic + 1 + n, h) - pic - 1;
 ll res = 0;
 ll k1 = h * pos - sum[pos];
 ll k2 = sum[n] - sum[pos] - h * (n - pos);
 res = min(k1, k2);
 k1 -= res;
 k2 -= res;
 res *= m;
 res += k1 * a;
 res += k2 * r;
 return res;
}
int main()
{

 cin >> n >> a >> r >> m;
 for (int i = 1; i <= n;i++)
 {

2026/01/14 04:19 5/6 CF #643 (div2)

CVBB ACM Team - https://wiki.cvbbacm.com/

 scanf("%lld", &pic[i]);
 }
 sort(pic + 1, pic + 1 + n);
 m = min(m, a + r);
 for (int i = 1; i <= n;i++)
 sum[i] = sum[i - 1] + pic[i];
 ll ans = 0x3f3f3f3f3f3f3f3f;
 ans = min(ans, cal(sum[n] / n));
 ans = min(ans, cal(sum[n] / n + 1));
 for (int i = 1; i <= n; i++)
 ans = min(ans, cal(pic[i]));
 cout << ans;
}

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <stdio.h>
using namespace std;
typedef long long ll;
const int MAX = 1e5 + 20;
ll pic[MAX];
ll sum[MAX];
ll n, a, r, m;
ll cal(ll h)
{
 int pos = lower_bound(pic + 1, pic + 1 + n, h) - pic - 1;
 ll res = 0;
 ll k1 = h * pos - sum[pos];
 ll k2 = sum[n] - sum[pos] - h * (n - pos);
 res = min(k1, k2);
 k1 -= res;
 k2 -= res;
 res *= m;
 res += k1 * a;
 res += k2 * r;
 return res;
}
int main()
{

 cin >> n >> a >> r >> m;
 for (int i = 1; i <= n;i++)
 {
 scanf("%lld", &pic[i]);
 }
 sort(pic + 1, pic + 1 + n);
 m = min(m, a + r);
 for (int i = 1; i <= n;i++)
 sum[i] = sum[i - 1] + pic[i];
 ll ans = 0x3f3f3f3f3f3f3f3f;

Last
update:
2020/05/23
03:04

2020-2021:teams:too_low:cf643_tj_cy https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:too_low:cf643_tj_cy&rev=1590174292

https://wiki.cvbbacm.com/ Printed on 2026/01/14 04:19

 int L = 0, R = 1e9;
 while (L < R)
 {
 int mid = (L + R) >> 1;
 int mmid = (mid + R) >> 1;
 if (mid == mmid)
 break;
 if (cal((ll)mid) < cal((ll)mmid))
 R = mmid;
 else
 L=mid;
 }
 for (int i = L; i <= R;i++)
 ans = min(ans, cal((ll)i));
 cout << ans;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:too_low:cf643_tj_cy&rev=1590174292

Last update: 2020/05/23 03:04

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:too_low:cf643_tj_cy&rev=1590174292

	CF #643 (div2)
	A. Sequence with Digits
	B. Young Explorers
	C. Count Triangles
	D. Game With Array
	E. Restorer Distance

