
2026/01/14 04:01 1/15 1322B - Present

CVBB ACM Team - https://wiki.cvbbacm.com/

1322B - Present

$4e5$ 个数，问两两求和后的异或和。

可以按位考虑，考虑第 k 位时给数字模 2^{k+1} ，这样第 k 位为 1 和只可能在
$[2^k,2^{k+1}-1],[2^{k+1}+2^k,2^{k+2}-2]$ 区间，对于每个数lower_bound找位置就好。

#include<bits/stdc++.h>
#define ll long long
#define pii pair<int,int>
#define mp make_pair
#define fi first
#define se second
#define pb push_back
using namespace std;
const int N=4e5+10;
int a[N],num[N];
int main()
{
 int n;
 scanf("%d",&n);
 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
 int ans=0;
 for(int k=1;k<=2e7;k<<=1)
 {
 ll tot=0,res=0;
 for(int i=1;i<=n;i++)num[++tot]=a[i]%(k<<1);
 sort(num+1,num+1+tot);
 for(int i=1;i<=tot;i++)
 {
 int l=k-num[i],r=(k<<1)-num[i];
 if(l<=r)res+=lower_bound(num+1,num+i,r)-
lower_bound(num+1,num+i,l);
 l=(k<<1)+k-num[i],r=(k<<2)-1-num[i];
 if(l<=r)res+=lower_bound(num+1,num+i,r)-
lower_bound(num+1,num+i,l);
 }
 if(res&1)ans|=k;
 }
 printf("%d\n",ans);
 return 0;
}

Last
update:
2020/08/04
19:43

2020-2021:teams:wangzai_milk:cf2100-2800
泛做1

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:wangzai_milk:cf2100-2800%E6%B3%9B%E5%81%9A1&rev=1596541387

https://wiki.cvbbacm.com/ Printed on 2026/01/14 04:01

1322C - Instant Noodles

二分图，右边的点每个有一个点权，对于左边点的集合 S ， $N(S)$ 是所有与集合中点邻接的点， $f(S)$
是 $N(S)$ 的点权之和。问对与所有非空集合 S ， $f(S)$ 的 \gcd 。

如果某些右边的点邻接的点完全相同，则缩点，将权值定为它们的和，去除度数零的点，此时所有点权的
\gcd 即答案。

证明：设此时的 \gcd 为 g ，全集 U 。给所有 c_i 除以 g 。若答案为 $k\times g(k > 1)$ ，则
$k\mid f(U_L)$ 。而必定存在 $k\nmid c_j$ （因为 \gcd 已除），取度数最小的这样的 j ，取集合 S'
为左边所有不与 j 相邻的点，则 $N(S')$ 仅不包含 j 与邻接点是 j 的子集的点，所有右边点的点权
和被 k 整除，而这些点的点权和不被 k 整除，可以推出 $k\nmid f(S')$ 。矛盾，故不存在这样的 k 。

写法参考了别人的题解，第一次用iota还有vector比较大小什么的，很神秘。

#include<bits/stdc++.h>
#define ll long long
#define pii pair<int,int>
#define mp make_pair
#define fi first
#define se second
#define pb push_back
using namespace std;
const int N=5e5+10;
ll c[N];
vector<int>g[N],num;
int main()
{
 int t;
 scanf("%d",&t);
 while(t--)
 {
 int n,m;
 scanf("%d%d",&n,&m);
 for(int i=1;i<=n;i++)vector<int>().swap(g[i]),scanf("%lld",&c[i]);
 for(int i=1;i<=m;i++)
 {
 int u,v;
 scanf("%d%d",&u,&v);
 g[v].pb(u);
 }
 for(int i=1;i<=n;i++)sort(g[i].begin(),g[i].end());
 vector<int>(n).swap(num);
 iota(num.begin(),num.end(),1);
 sort(num.begin(),num.end(),[&](int a,int b){return g[a]<g[b];});
 ll res=0;
 for(int i=0;i<n;i++)
 {

2026/01/14 04:01 3/15 1322B - Present

CVBB ACM Team - https://wiki.cvbbacm.com/

 if(g[num[i]].empty())continue;
 ll f=c[num[i]];
 while(i+1<n&&g[num[i+1]]==g[num[i]])i++,f+=c[num[i]];
 if(!res)res=f;else res=__gcd(res,f);
 }
 printf("%lld\n",res);
 }
 return 0;
}

1322D - Reality Show

n 个观众每个观众有攻击力 l_i ，邀请他花费 s_i ，并直接获得 c_{l_i} 的收益。当现有的两个观
众攻击力相同，他们中一个会消失另一个攻击力变 l_i+1 并获得新的收益 c_{l_i+1} （这个过程会不
断进行直到选择的观众互不相同）。所选观众的攻击力要求是不上升的，最大化利润。

注意到观众打架消除的过程像二进制加法的进位，处理观众的顺序其实是不影响最终的获利的。由于进位
是向高位进的，翻转序列搞一个不下降序列比较容易。我们可以用 $f[l_i][k]$ 表示当前选择的最大攻击力
为 l_i ，且 l_i 有 k 个时的最大获利，则 $f[l_i][k]$ 可以向 $f[l_i+1][k/2]$ 转移（因为每次都除二复
杂度是可接受的）。

#include<bits/stdc++.h>
#define ll long long
#define pii pair<int,int>
#define mp make_pair
#define fi first
#define se second
#define pb push_back
using namespace std;
const int N=5005;
const ll inf=(1LL<<60);
int l[N],s[N],c[N];
ll f[N][N],res;
int main()
{
 int n,m;
 scanf("%d%d",&n,&m);
 for(int i=1;i<=n;i++)scanf("%d",&l[i]);
 for(int i=1;i<=n;i++)scanf("%d",&s[i]);
 for(int i=1;i<=n+m;i++)scanf("%d",&c[i]);
 for(int i=1;i<=n+m;i++)for(int j=1;j<=n;j++)f[i][j]=-inf;
 for(int i=n;i;i--)
 {
 for(int k=n;k;k--)
 {
 f[l[i]][k]=max(f[l[i]][k],f[l[i]][k-1]+c[l[i]]-s[i]);

Last
update:
2020/08/04
19:43

2020-2021:teams:wangzai_milk:cf2100-2800
泛做1

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:wangzai_milk:cf2100-2800%E6%B3%9B%E5%81%9A1&rev=1596541387

https://wiki.cvbbacm.com/ Printed on 2026/01/14 04:01

 for(int j=l[i],cnt=k;j<n+m&&cnt;j++,cnt>>=1)
 f[j+1][cnt>>1]=max(f[j+1][cnt>>1],f[j][cnt]+(cnt>>1)*c[j+1]);
 }
 for(int j=l[i];j<n+m;j++)f[j+1][0]=max(f[j+1][0],f[j][0]);
 }
 for(int i=1;i<=n+m;i++)res=max(res,f[i][1]);
 printf("%lld\n",res);
 return 0;
}

1325E - Ehab's REAL Number Theory Problem

n 个因子不超过 7 个的数 a_i 。问最少选多少个乘积会是完全平方数。

首先如果某个数字能被完全平方数整除就除掉它，不影响结果。之后由于因子不超过 7 个，所有 a_i
的质因子数不会多于 2 个。如果有 1 就直接选它结束，否则其余数字将会是 p 或 $p·q$ 的形式，前
者给 $1,p$ 连边，后者给 p,q 连边，问题就转化成无向图找最小环。找环我们直接bfs，由于每条边意味
着两个顶点的数字相乘，最小环中必包含一个不大于 $\sqrt{\max_{a_i}}$ 的点，仅枚举这些点作为起点
即可。

#include<bits/stdc++.h>
#define ll long long
#define pii pair<int,int>
#define mp make_pair
#define fi first
#define se second
#define pb push_back
using namespace std;
const int N=1e6+10;
int pri[N],tot1,a[N],head[N],cnt=-1,num[N],tot2,res=N,d[N],vis[N];
bool jud[N];
vector<int>g[N];
struct Node{int nxt,to;}edges[N];
void addedge(int u,int v){edges[++cnt]=Node{head[u],v},head[u]=cnt;}
void init()
{
 jud[1]=1;
 for(int i=2;i<=1000;i++)
 {
 if(!jud[i])pri[++tot1]=i;
 for(int j=1;j<=tot1&&pri[j]*i<=1000;j++)
 {
 jud[pri[j]*i]=1;
 if(i%pri[j]==0)break;
 }

2026/01/14 04:01 5/15 1322B - Present

CVBB ACM Team - https://wiki.cvbbacm.com/

 }
}
queue<int>q;
void bfs(int s)
{
 memset(d,0x3f,sizeof(d));
 memset(vis,0,sizeof(vis));
 queue<int>().swap(q);
 q.push(s),d[s]=0;
 while(!q.empty())
 {
 int u=q.front();q.pop();
 for(int i=head[u];~i;i=edges[i].nxt)
 {
 int v=edges[i].to;
 if(vis[i])continue;
 if(d[v]==0x3f3f3f3f)d[v]=d[u]+1,vis[i]=vis[i^1]=1,q.push(v);
 else {res=min(res,d[u]+d[v]+1);}
 }
 }
}
int main()
{
 int n;
 memset(head,-1,sizeof(head));
 scanf("%d",&n),init();
 for(int i=1;i<=n;i++)
 {
 scanf("%d",&a[i]);
 for(int j=1;j<=tot1;j++)
 {
 while(a[i]%(pri[j]*pri[j])==0)a[i]/=pri[j]*pri[j];
if(a[i]%pri[j]==0)g[i].pb(pri[j]),a[i]/=pri[j],num[++tot2]=pri[j];
 }
 if(a[i]!=1)g[i].pb(a[i]),num[++tot2]=a[i];
 if(g[i].empty()){puts("1");return 0;}
 if(g[i].size()<2)g[i].pb(1),num[++tot2]=1;
 }
 sort(num+1,num+1+tot2);
 tot2=unique(num+1,num+1+tot2)-num-1;
 for(int i=1;i<=n;i++)
 {
 g[i][0]=lower_bound(num+1,num+1+tot2,g[i][0])-num;
 g[i][1]=lower_bound(num+1,num+1+tot2,g[i][1])-num;
 addedge(g[i][0],g[i][1]),addedge(g[i][1],g[i][0]);
 }
 for(int i=1;i<=tot2;i++)if(num[i]<=1000)bfs(i);
 printf("%d\n",res==N?-1:res);
 return 0;
}

Last
update:
2020/08/04
19:43

2020-2021:teams:wangzai_milk:cf2100-2800
泛做1

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:wangzai_milk:cf2100-2800%E6%B3%9B%E5%81%9A1&rev=1596541387

https://wiki.cvbbacm.com/ Printed on 2026/01/14 04:01

1325F - Ehab's Last Theorem

给无重边自环的 n 个节点的无向图，要求构造至少 $\lceil\sqrt{n}\rceil$ 个节点的简单环，或
$\lceil\sqrt{n}\rceil$ 个节点的独立集。

dfs树上每个非树边 (u,v) 都代表了一个大小为 $|\mathrm{dep}_u-\mathrm{dep}_v|+1$ 的环（dfs树
的一个性质是所有非树边连接一个点与它的某个祖先）。搞一个栈记录一下节点，如果环的大小满足
$\lceil\sqrt{n}\rceil$ ，选择方案2直接输出。

而如果不存在 $|\mathrm{dep}_u-\mathrm{dep}_v|+1\ge\lceil\sqrt{n}\rceil$ ，则鸽巢原理说明每个点
最多连出 $\lceil\sqrt{n}\rceil-2$ 条非树边，最多限制 $\lceil\sqrt{n}\rceil-1$ 个点不可取，所以必能得
到 $\lceil\sqrt{n}\rceil$ 大小独立集。从dfs树的叶子节点往上取即可。

#include<bits/stdc++.h>
#define ll long long
#define pii pair<int,int>
#define mp make_pair
#define fi first
#define se second
#define pb push_back
using namespace std;
const int N=2e5+10;
queue<int>q;
int head[N],cnt,st[N],top,vis[N],d[N],f[N],bloc,done=0,banned[N];
struct Node{int nxt,to;}edges[N*2];
void addedge(int u,int v){edges[++cnt]=Node{head[u],v},head[u]=cnt;}
void dfs1(int u)
{
 vis[u]=1,st[++top]=u;
 int isleaf=1;
 for(int i=head[u];~i&&!done;i=edges[i].nxt)
 {
 int v=edges[i].to;
 if(f[u]==v)continue;
 if(!vis[v])isleaf=0,f[v]=u,d[v]=d[u]+1,dfs1(v);
 else if(d[u]-d[v]+1>=bloc)
 {
 printf("2\n%d\n",d[u]-d[v]+1);
 for(int j=d[v];j<=d[u];j++)printf("%d ",st[j]);
 puts(""),done=1;
 }
 }
 if(isleaf)q.push(u);
 top--;
}
int main()
{
 int n,m;

2026/01/14 04:01 7/15 1322B - Present

CVBB ACM Team - https://wiki.cvbbacm.com/

 memset(head,-1,sizeof(head));
 scanf("%d%d",&n,&m),bloc=ceil(sqrt(n))+0.1;
 for(int i=1;i<=m;i++)
 {
 int u,v;
 scanf("%d%d",&u,&v);
 addedge(u,v),addedge(v,u);
 }
 d[1]=1,dfs1(1);
 if(!done)
 {
 printf("1\n");
 while(!q.empty()&&bloc)
 {
 int u=q.front();q.pop();
 if(!banned[u])
 {
 printf("%d ",u),bloc--,banned[u]=1;
 for(int i=head[u];~i;i=edges[i].nxt)
 {
 int v=edges[i].to;
 banned[v]=1;
 }
 }
 if(f[u])q.push(f[u]);
 }
 assert(bloc==0);
 puts("");
 }
 return 0;
}

1326E - Bombs

给出长度为 n 的两个排列 p,q ，按照顺序从 1 到 n ，把 p_i 加入集合，如果位置 i 有炸弹则
从集合中取出一个最大值，结果是最后集合中的最大值。第 i 个答案回答的是 $q_1,q_2,\ldots q_{i-1}$
处有炸弹时的结果。

一个比较厉害的转换思维。我们观察到答案是单调不上升的，如果答案至多为 x ，我们就需要让
$x+1,x+2,\ldots,n$ 都被炸掉，条件就是对于每个位置右边大于 x 的 p_i 的数量都不多于右边的炸弹
数量。可以线段树维护 $右面不小于当前答案的p_i的数量-右面炸弹数量$ ，如果小于等于 $ 0 $ 则减小当前
答案。

#include<bits/stdc++.h>
#define ll long long
#define pii pair<int,int>

Last
update:
2020/08/04
19:43

2020-2021:teams:wangzai_milk:cf2100-2800
泛做1

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:wangzai_milk:cf2100-2800%E6%B3%9B%E5%81%9A1&rev=1596541387

https://wiki.cvbbacm.com/ Printed on 2026/01/14 04:01

#define mp make_pair
#define fi first
#define se second
#define pb push_back
using namespace std;
const int N=3e5+10;
int p[N],q[N],maxn[N<<2],lz[N<<2],pos[N];
void pushdown(int idx)
{
 int t=lz[idx];
 lz[idx]=0,lz[idx<<1]+=t,lz[idx<<1|1]+=t;
 maxn[idx<<1]+=t,maxn[idx<<1|1]+=t;
}
void add(int idx,int l,int r,int a,int b,int x)
{
 if(a<=l&&b>=r){lz[idx]+=x,maxn[idx]+=x;return;}
 int mid=(l+r)>>1;
 pushdown(idx);
 if(b<=mid)add(idx<<1,l,mid,a,b,x);
 else if(a>mid)add(idx<<1|1,mid+1,r,a,b,x);
 else add(idx<<1,l,mid,a,b,x),add(idx<<1|1,mid+1,r,a,b,x);
 maxn[idx]=max(maxn[idx<<1],maxn[idx<<1|1]);
}
int main()
{
 int n;
 scanf("%d",&n);
 for(int i=1;i<=n;i++)scanf("%d",&p[i]),pos[p[i]]=i;
 for(int i=1;i<=n;i++)scanf("%d",&q[i]);
 int res=n;
 add(1,1,n,1,pos[n],1);
 for(int i=1;i<=n;i++)
 {
 printf("%d ",res);
 if(i==n)break;
 add(1,1,n,1,q[i],-1);
 while(maxn[1]<=0)--res,add(1,1,n,1,pos[res],1);
 }
 puts("");
 return 0;
}

1373F - Network Coverage

$a_i $代表第 $i $处的需求量， $b_i $代表第 $i $处的资源， $i $处资源只可以供给 $i $和 $i+1 $（ $n $则

2026/01/14 04:01 9/15 1322B - Present

CVBB ACM Team - https://wiki.cvbbacm.com/

可以供给 $n $和 $1 $），问是否可以满足全部需求。

神秘的单调性与神秘的二分。我们发现只要确定某一处提供给自己的资源量就可以确定整个状态，这里我
们选择 $1 $， $1 $提供给自己的量越少（即提供给 $2 $越多），后面 $2 $到 $n $的需求越可能得到满足。
我们二分这个能使 $2 $到 $n $的需求得以满足的 $1 $能提供给自己最多的量，最后判断这种情况下首尾相
接后 $1 $能否得到满足即可。

#include<bits/stdc++.h>
#define ll long long
#define pii pair<int,int>
#define mp make_pair
#define fi first
#define se second
#define pb push_back
using namespace std;
const int N=1e6+10;
ll read()
{
 ll x=0,f=1;char c=getchar();
 while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
 while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
 return x*f;
}
int n,a[N],b[N],c[N]; //a 需要 b 可分配
bool judge(int k)
{
 for(int i=0;i<n;i++)c[i]=0;
 c[0]=k,c[1]=b[0]-k; //c 已经得到
 for(int i=1;i<n;i++)
 {
 int t=max(0,a[i]-c[i]);
 if(b[i]<t)return false;
 c[(i+1)%n]+=b[i]-t;
 }
 return true;
}
int main()
{
 int t=read();
 while(t--)
 {
 n=read();
 for(int i=0;i<n;i++)a[i]=read();
 for(int i=0;i<n;i++)b[i]=read();
 int l=0,r=b[0],res=-1;
 while(l<=r)
 {
 int mid=(l+r)>>1;
 if(judge(mid))l=mid+1,res=mid;
 else r=mid-1;
 }

Last
update:
2020/08/04
19:43

2020-2021:teams:wangzai_milk:cf2100-2800
泛做1

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:wangzai_milk:cf2100-2800%E6%B3%9B%E5%81%9A1&rev=1596541387

https://wiki.cvbbacm.com/ Printed on 2026/01/14 04:01

 if(res!=-1&&judge(res)&&c[0]>=a[0])puts("YES");
 else puts("NO");
 }
 return 0;
}

1373E - Sum of Digits

$f(x) $是 $x $的数位和，给定 $n,k $构造 $x $使得 $\sum\limits_{i=0}^kf(x+i)=n $。

数据范围很小甚至可以打表。观察到 $k\le9 $，所以至多进位 $1 $次。事实上手玩一下发现是这样， $n $在
进位情况下是 $x99\ldots998y $的形式，不进位情况下是 $x99\ldots999y $的形式，枚举 $x,y $和长度
$l $就好。

#include<bits/stdc++.h>
#define ll long long
#define pii pair<int,int>
#define mp make_pair
#define fi first
#define se second
#define pb push_back
using namespace std;
char s1[55],s2[55];
int main()
{
 int t;
 scanf("%d",&t);
 while(t--)
 {
 int n,k,f=0;
 scanf("%d%d",&n,&k);
 for(int i=0;i<9;i++)
 for(int l=0;l<20;l++)
 for(int j=0;j<10;j++)
 {
 int tmp=(i+l*9+j)*(k+1)+(1+k)*k/2;
 if(j+k>=10)tmp-=9*(j+k-9);
 if(j+k>=10&&l)tmp-=k+1;
 if(tmp==n)
 {
 int cnt=0;
 if(i)s2[cnt++]=i+'0';
 for(int ii=1;ii<=l;ii++)
 {
 if(ii==l&&j+k>=10)s2[cnt++]='8';

2026/01/14 04:01 11/15 1322B - Present

CVBB ACM Team - https://wiki.cvbbacm.com/

 else s2[cnt++]='9';
 }
 s2[cnt++]=j+'0',s2[cnt]='\0';
if(!f||strlen(s1)>strlen(s2)||(strlen(s1)==strlen(s2)&&strcmp(s1,s2)>0))
 strcpy(s1,s2);
 f=1;
 }
 }
 if(!f)printf("%d\n",-1);
 else printf("%s\n",s1);
 }
 return 0;
}

1383D - Rearrange

给 $n\times m $的矩阵，其中元素是 $1 $到 $n\times m $的排列。现要求构造同样用 $1 $到 $n\times m
$的排列填充的 $n\times m $矩阵，使得：

每一行、每一列都是单峰的。

行最大值的集合与给定矩阵相同，列最大值的集合与给定矩阵相同。

一个想法是数字由大到小填，这样当填下某个数字时就可以确定某行或某列的最大值。官方提供了这样一
种构造方法：

初始待填充矩阵 $ 0 $行 $ 0 $列。

$\mathtt{for}\;num\;\mathtt{in}\;n\times m\;..\;1 $

如果有行最大值为 $num $，增加行；有列最大值为 $num $，增加列。 $num $为某个最大值就直接填在右
下角，如果是行最大值，将左边的一整行由近到远加入队列；是列最大值，将上边的一整列由近到远加入
队列。 $num $不是最大值则从队列中取一个位置出来放在该位置。

随便想一下就发现这样能够保证单峰性（峰值即那些行列最大值）。

#include<bits/stdc++.h>
#define ll long long
#define pii pair<int,int>
#define mp make_pair
#define fi first
#define se second
#define pb push_back
using namespace std;
const int N=255;
int a[N][N],b[N][N],r[N],c[N];
queue<pii>q;

Last
update:
2020/08/04
19:43

2020-2021:teams:wangzai_milk:cf2100-2800
泛做1

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:wangzai_milk:cf2100-2800%E6%B3%9B%E5%81%9A1&rev=1596541387

https://wiki.cvbbacm.com/ Printed on 2026/01/14 04:01

int main()
{
 int n,m;
 scanf("%d%d",&n,&m);
 for(int i=0;i<n;i++)for(int j=0;j<m;j++)
 scanf("%d",&a[i][j]),r[i]=max(r[i],a[i][j]),c[j]=max(c[j],a[i][j]);
 sort(r,r+n),sort(c,c+m);
 int x=0,y=0,i=n-1,j=m-1;
 for(int num=n*m;num;num--)
 {
 if(r[i]==num)x++;
 if(c[j]==num)y++;
 if(r[i]==num||c[j]==num)b[x][y]=num;
 else b[q.front().fi][q.front().se]=num,q.pop();
 if(r[i]==num)
 {
 for(int k=y-1;k;k--)q.push(mp(x,k));
 i--;
 }
 if(c[j]==num)
 {
 for(int k=x-1;k;k--)q.push(mp(k,y));
 j--;
 }
 }
 for(int i=1;i<=n;i++,puts(""))for(int j=1;j<=m;j++)
 printf("%d ",b[i][j]);
 return 0;
}

1388E - Uncle Bogdan and Projections

给 x 轴以上的若干水平线段。现可以指定一个向量让所有线段沿该方向投影到 x 轴上，投影不可以
重叠，宽度定义为投影最右端横坐标减去最左端横坐标，问可能的最小宽度。

如果纵坐标全部相同，直接垂直投影即可。否则我们可以在使得某个投影与投影相切的时候取到最小宽度。
对任意两个纵坐标不同的线段，我们可以算出两个投影相切的角度，从而得到一段不可行的区间。扫描线
得出全局的可行投影角度区间。

而要在合理时间内得到取若干角度时投影的最大最小横坐标，可以用一个叫Convex Hull Trick的做法。设
θ 为投影线与 x 轴正方向的夹角， (x,y) 投影在横坐标 $x-\frac y{tan(\theta)}$ 的位置。以 $-
\frac 1{tan(\theta)}$ 为自变量，则 y_i 为斜率， x_i 为截距。若干直线只会在一个凸包上取得最大值，
我们先求出这个凸包，之后对于每个 $-\frac 1{tan(\theta_i)}$ 可以二分。最小值同理。

#include<bits/stdc++.h>

2026/01/14 04:01 13/15 1322B - Present

CVBB ACM Team - https://wiki.cvbbacm.com/

#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pii pair<int,int>
using namespace std;
const int N=2005;
const double pi=acos(-1.0);
const double eps=1e-10;
const double inf=1e20;
int l[N],r[N],y[N],tot1,tot2,top1,top2;
int dcmp(double x){return x<-eps?-1:x>eps;}
vector<double>v1,v2;
double num[N*N*2],res=inf,x1[N*2],x2[N*2];
struct line{int k,b;}s[N*2],st1[N*2],st2[N*2];
double getInt(line l1,line l2){return (l2.b-l1.b)*1.0/(l1.k-l2.k);}
void getMax(double x)
{
 int ll=1,rr=top1;double maxn;
 while(ll<=rr)
 {
 int mid=(ll+rr)>>1;
 double pl=x1[mid-1],pr=x1[mid];
 if(x>=pl&&x<=pr){maxn=st1[mid].k*x+st1[mid].b;break;}
 else if(x>pr)ll=mid+1;
 else rr=mid-1;
 }
 ll=1,rr=top2;double minn;
 while(ll<=rr)
 {
 int mid=(ll+rr)>>1;
 double pl=x2[mid-1],pr=x2[mid];
 if(x>=pl&&x<=pr){minn=st2[mid].k*x+st2[mid].b;break;}
 else if(x>pr)ll=mid+1;
 else rr=mid-1;
 }
 res=min(res,maxn-minn);
}
int read()
{
 int x=0,f=1;char c=getchar();
 while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
 while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
 return x*f;
}
int main()
{
 int n=read();
 double maxt=-inf,mint=inf;
 bool f=true;
 for(int i=1;i<=n;i++)

Last
update:
2020/08/04
19:43

2020-2021:teams:wangzai_milk:cf2100-2800
泛做1

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:wangzai_milk:cf2100-2800%E6%B3%9B%E5%81%9A1&rev=1596541387

https://wiki.cvbbacm.com/ Printed on 2026/01/14 04:01

 {
 l[i]=read(),r[i]=read(),y[i]=read();
 maxt=max(maxt,1.0*r[i]),mint=min(mint,1.0*l[i]);
 s[++tot2]=line{y[i],l[i]};
 s[++tot2]=line{y[i],r[i]};
 for(int j=1;j<i;j++)
 if(y[i]!=y[j])
 {
 int a=i,b=j;f=false;
 if(y[a]<y[b])swap(a,b);
 int u=y[a]-y[b],p=r[a]-l[b],q=l[a]-r[b];
 int g1=abs(__gcd(u,p)),g2=abs(__gcd(u,q));
 double ang1=atan2(u/g1,p/g1);
 double ang2=atan2(u/g2,q/g2);
 v1.pb(ang1),v2.pb(ang2);
 num[++tot1]=ang1,num[++tot1]=ang2;
 }
 }
 if(f){printf("%.10lf\n",maxt-mint);return 0;}
sort(num+1,num+1+tot1),sort(v1.begin(),v1.end()),sort(v2.begin(),v2.end());
 sort(s+1,s+1+tot2,[&](line l1,line l2){return
l1.k==l2.k?l1.b>l2.b:l1.k<l2.k;});
 for(int i=1;i<=tot2;i++)
 {
 if(top1&&st1[top1].k==s[i].k)continue;
 while(top1>=2&&dcmp(getInt(s[i],st1[top1])-x1[top1-1])<=0)top1--;
 st1[++top1]=s[i];
 if(top1>=2)x1[top1-1]=getInt(st1[top1],st1[top1-1]);else
x1[top1-1]=-inf;
 }
 x1[top1]=inf;
 sort(s+1,s+1+tot2,[&](line l1,line l2){return
l1.k==l2.k?l1.b<l2.b:l1.k>l2.k;});
 for(int i=1;i<=tot2;i++)
 {
 if(top2&&st2[top2].k==s[i].k)continue;
 while(top2>=2&&dcmp(getInt(s[i],st2[top2])-x2[top2-1])<=0)top2--;
 st2[++top2]=s[i];
 if(top2>=2)x2[top2-1]=getInt(st2[top2],st2[top2-1]);else
x2[top2-1]=-inf;
 }
 x2[top2]=inf;
 for(int i=1,j=0,k=0,cnt=0;i<=tot1;i++)
 {
 while(k<v2.size()&&dcmp(v2[k]-num[i])<=0)k++,cnt--;
 if(!cnt)getMax(-1.0/tan(num[i]));
 while(j<v1.size()&&dcmp(v1[j]-num[i])<=0)j++,cnt++;
 }
 printf("%.10lf\n",res);
 return 0;

2026/01/14 04:01 15/15 1322B - Present

CVBB ACM Team - https://wiki.cvbbacm.com/

}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:wangzai_milk:cf2100-2800%E6%B3%9B%E5%81%9A1&rev=1596541387

Last update: 2020/08/04 19:43

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:wangzai_milk:cf2100-2800%E6%B3%9B%E5%81%9A1&rev=1596541387

	1322B - Present
	1322C - Instant Noodles
	1322D - Reality Show
	1325E - Ehab's REAL Number Theory Problem
	1325F - Ehab's Last Theorem
	1326E - Bombs
	1373F - Network Coverage
	1373E - Sum of Digits
	1383D - Rearrange
	1388E - Uncle Bogdan and Projections

