2025/11/04 17:12 1/1 Fly

Fly

题意

给定一个长度为 \$n\$ 的数列 \$a_i\$ 和 \$k\$ 个限制形如 \$(b_i,c_i)\$ 和一个数 \$m\$ [求有多少个数列 \$x_i\$满足 \$\sum{a_ix_i}\le m\$ 且 \$x_{b_i}\& 2^{c_i}=0\$ [

 $n\leq 4*10^4$, $m\leq 10^{18}$, $k\leq 5*10^3$, $sum\{a_i\}\leq 4*10^4$, $b_i\leq n$, $c_i<60$, MOD=998244353

题解

我们发现限制是对于每个 $$x_i$$ 的二进制位进行的,所以考虑直接将 $$a_ix_i$$ 分成 $$\sum_{i,k} \ \$ 以 $$\sum_{i,k} \ \$ 的 $$\sum_{i,k} \ \$

注意到 \$m\$ 非常大,所以直接做背包是没有前途的。这时候我们注意到 \$a_i2^k\$ 这样的一个物品是不会影响到总和的二进制最低的 \$k\$ 位的,所以我们考虑按照 \$2^0\$ 到 \$2^59\$ 这个顺序来对这些物品进行DP \square

我们定义 \$dp_{i,j,0/1}\$ 表示已经选完 \$2^i\$ 一类的物品,总和 \$S\$ 满足 \$\lfloor \frac{S}{2^{i+1}} \rfloor = j\$ □且 \$S\%2^i\$ 是否严格大于 \$m\%2^i\$ 的方案数。

考虑先分析一下第二维的范围,我们假设 $_i$ =SA\$ [已经选完 \$2^k\$ 的物品时[]\$S\le \sum_{i=0}^{k}{2^iSA}\le 2^{k+1}SA\$ []所以第二维最多也就是 \$SA\$ []同时我们也可以发现这时候直接DP还是没啥前途。

考虑对于每一类物品一起算,利用生成函数显然就是 $prod_{i=1}^{n}_{(i,k)\setminus (b,c)}(1+x^{a i})$

From:

https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link

https://wiki.cvbbacm.com/doku.php?id=2022-2023:teams:eager_to_embrace_the_seniors_thigh:1h&rev=1660205348

Last update: 2022/08/11 16:09

