2025/11/04 17:17 1/2 Fly

Fly

题意

给定一个长度为 \$n\$ 的数列 \$a_i\$ 和 \$k\$ 个限制形如 \$(b_i,c_i)\$ 和一个数 \$m\$ □求有多少个数列 \$x_i\$ 满足 \$\sum{a ix i}\le m\$ 且 \$x {b i}\& 2^{c i}=0\$ □

 $n\leq 4*10^4$, $m\leq 10^{18}$, $k\leq 5*10^3$, $sum\{a_i\}\leq 4*10^4$, $b_i\leq n$, $c_i<60$, MOD=998244353

题解

注意到 \$m\$ 非常大,所以直接做背包是没有前途的。这时候我们注意到 \$a_i2^k\$ 这样的一个物品是不会影响到总和的二进制最低的 \$k\$ 位的,所以我们考虑按照 \$2^0\$ 到 \$2^59\$ 这个顺序来对这些物品进行DP\\

我们定义 \$dp_{i,j,0/1}\$ 表示已经选完 \$2^i\$ 一类的物品,总和 \$S\$ 满足 \$\lfloor \frac{S}{2^{i+1}} \rfloor = j\$ □且 \$S\%2^i\$ 是否严格大于 \$m\%2^i\$ 的方案数。

考虑先分析一下第二维的范围,我们假设 $s_a_i=SA$ [已经选完 2^k 的物品时[$s_a_i=SA$] [Sum_i=0] k [i=0] k [i=0] k [i=0] k [i=0] i=0] i=0]

考虑对于每一类物品一起算,利用生成函数显然就是 \$\prod_{i=1}^{n} {[(i,k)\notin (b,c)](1+x^{2^ka_i})} \$\]进行变化可以变为 \$\prod_{i=1}^{n} {(1+x^{2^ka_i})*(\prod_{(i,k)\in (b,c)} {(1+x^{2^ka_i})})^{-1}} \$\]我们考虑将其中的 \$x^{2^k} 变为 \$x\$\]因为对于每个 \$2^k\$ 我们可以发现剩余的部分是完全相同的。前面的部分设为 \$g(x)=\prod_{i=1}^{n} {(1+x^{a_i})} \$\]后面的部分我们考虑对每个 \$2^k\$ 我们做一次反向的背包来得到最终的式子,设其为 \$G(x)\$\]

我们注意到,对于 $\{x^i\}G(x)$ 和 $\{dp_{k-1,j,0/1}\}$ [我们可以得到新的第二维是 $\{floor \}G(x)\}$ $\{floor \}G(x)$ $\{floor \}G(x)$ $\{floor \}G(x)$ $\{floor \}G(x)$ $\{floor$

考虑对于每个 \$2^k\$ 得到 \$G(x)\$ 之后怎么结合 \$dp_{k-1}\$ 来得到 \$dp_{k}\$ □我们分两类来转 移□\$dp_{k,\lfloor \frac{X}{2} \rfloor,[X\&1>m_k]}=\sum_{i+j=X}{[x^i]G(x)*dp_{k-1,j,0}}\$ 和 \$dp_{k,\lfloor \frac{X}{2} \rfloor,[X\&1\ge m_k]}=\sum_{i+j=X}{[x^i]G(x)*dp_{k-1,j,1}}\$ □这两类分别做一次卷积即可。

最后我们的答案就是 \$dp {59,0,0}\$ □我实现略微卡常。

Last update: 2022/08/11 2022-2023:teams:eager_to_embrace_the_seniors_thigh:1h https://wiki.cvbbacm.com/doku.php?id=2022-2023:teams:eager_to_embrace_the_seniors_thigh:1h&rev=1660211928 17:58

From: https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link: https://wiki.cvbbacm.com/doku.php?id=2022-2023:teams:eager_to_embrace_the_seniors_thigh:1h&rev=1660211928

Last update: 2022/08/11 17:58

Printed on 2025/11/04 17:17 https://wiki.cvbbacm.com/