
2026/01/17 04:37 1/9 唱跳rap打代码

CVBB ACM Team - https://wiki.cvbbacm.com/

唱跳rap打代码

训练记录

比赛时间 比赛名称 赛中过题 总计过题 题目总数 校内排名 总榜排名

23.07.17 2023 牛客暑期多校训练营 1 4 - 13 12/15 206/1505
23.07.21 2023 牛客暑期多校训练营 2 - - - - -

训练题解

牛客1

A

B

C

D

E

F

G

H

I

J

题目大意

赌博，初始赌1块钱，如果输了，下次赌两倍(1,2,4⋯)，如果赢了，获得当前次两倍的赌资(赢2,4,8⋯)，如
果现在的钱不够赌，则失败。

现在有n块钱，想赢到n+m块，求成功的概率。

算法思路

钱数为x时失败的概率为1/(2^k),k=[log2(x+1)]

https://wiki.cvbbacm.com/doku.php?id=2023-2024:teams:ikun_is_coding:23-nowcoder-1
https://wiki.cvbbacm.com/doku.php?id=2023-2024:teams:ikun_is_coding:23-nowcoder-2

Last
update:
2023/07/19
10:43

2023-2024:teams:ikun_is_coding:front_page https://wiki.cvbbacm.com/doku.php?id=2023-2024:teams:ikun_is_coding:front_page&rev=1689734612

https://wiki.cvbbacm.com/ Printed on 2026/01/17 04:37

设从n赢到x块钱时失败的概率为ans,则从n赢到x+1块钱时失败的概率为ans+(1-
ans)*1/(2^k),k=[log2(x+2)]

对于一段区间内的x，其k是相同的，这是一个线性递推数列，很容易得到通项公
式a_n=(ans-1)*(1-1/(2^k))^n+1,a_0=ans;

即ans=(ans-1)*(1-1/(2^k))^n+1

遍历每一个k，找到对应的项数n，更新ans，可求出最终失败的概率

输出1-ans即为答案

AC代码

#include<bits/stdc++.h>
using namespace std;
long long n,m;
const int mod=998244353;
long long mul(long long a,long long b){
 long long res=1;
 while(b){
 if(b&1){
 res=res*a%mod;
 }
 a=a*a%mod;
 b>>=1;
 }
 return res;
}
int main(){
 cin>>n>>m;
 long long tmp=n;
 long long ans=0;
 long long p=pow(2,int(log2(n+1))+1)-1;
 p=min(p,tmp+m);
 int a0=log2(n+1);
 int a1=log2(n+m);
 for(int i=a0;i<=a1;i++){
 long long Ln=mul(pow(2,i),mod-2);
 long long C=(ans-1+mod)%mod;
 ans=(C*mul((1-Ln+mod)%mod,p-n)%mod+1)%mod;
 n=p;
 p=min(tmp+m,(p+1)*2-1);
 }
 cout<<(1-ans+mod)%mod<<endl;
 return 0;
}

2026/01/17 04:37 3/9 唱跳rap打代码

CVBB ACM Team - https://wiki.cvbbacm.com/

K

题目大意

给定一个简单图和常数k，每条边长度均为1，可以在图上的任意一条边上加一个点，操作次数不限。求最
终图中与1号节点距离不大于k的点最多有多少个。

算法思路

bfs固定一棵生成树，同时处理处每个点到1号点的距离。可以在所有非生成树的边加满点，所有生成树边
不动（非生成树的边好像叫桥来着）

遍历每一条非生成树边，可以加2*k-dis[u]-dis[v]数量的点，u,v为该边两端的节点。注意处理u或v本身距离
大于k的情况。

最后检查生成树的叶节点，若叶节点的距离小于k，可以在叶子结点处加点k-dis[leaf]

答案为上述所添加的节点数 + 最初距离小于等于k的节点数

AC代码

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=2e5+50;
ll n,m,k,ans;
int to[maxn<<1];
int nxt[maxn<<1];
int head[maxn],cnt=-1;
int a,b,d[maxn];
int dis[maxn];
bool vis[maxn];
bool f[maxn<<1];
bool flag[maxn];
void add_edge(int u,int v){
 to[++cnt]=v;
 nxt[cnt]=head[u];
 head[u]=cnt;
}
vector<int>ve[maxn];
void bfs(int st){
 queue<pair<int,int> >qu;
 qu.push(make_pair(st,0));
 vis[st]=1;
 while(!qu.empty()){
 int fr=qu.front().first;
 int d=qu.front().second;
 qu.pop();
 for(int i=head[fr];i!=-1;i=nxt[i]){
 if(vis[to[i]]){
 continue;
 }

Last
update:
2023/07/19
10:43

2023-2024:teams:ikun_is_coding:front_page https://wiki.cvbbacm.com/doku.php?id=2023-2024:teams:ikun_is_coding:front_page&rev=1689734612

https://wiki.cvbbacm.com/ Printed on 2026/01/17 04:37

 vis[to[i]]=1;
 qu.push(make_pair(to[i],d+1));
 ve[fr].push_back(to[i]);
 f[i]=1;
 dis[to[i]]=d+1;
 }
 }
}
bool dfs(int p,int fa){
 int sz=ve[p].size();
 ans++;
 for(int i=0;i<sz;i++){
 if(dis[ve[p][i]]>k)continue;
 if(!dfs(ve[p][i],p)){
 ans+=k-dis[ve[p][i]];
 }
 flag[p]=1;
 }
 for(int i=head[p];i!=-1;i=nxt[i]){
 if(f[i]||to[i]==fa||dis[to[i]]>k)continue;
 ans+=2*k-dis[p]-dis[to[i]];
 f[i]=1;
 f[i^1]=1;
 flag[p]=1;
 flag[to[i]]=1;
 }
 return flag[p];
}
int main(){
 cin>>n>>m>>k;
 memset(head,-1,sizeof(head));
 for(int i=0;i<m;i++){
 cin>>a>>b;
 add_edge(a,b);
 add_edge(b,a);
 }
 bfs(1);
 dfs(1,0);
 cout<<ans<<endl;
 return 0;
}

L

题目大意

给定三个长度为n的排列a，b，c和x，y，z。经过一次操作x，y，z变为a[y],b[z],c[x]（注意下标顺序），初
始x=y=z=1。 Q次询问，每次询问x',y',z'，求最少的操作次数，使(x,y,z)=(1,1,1)变为(x',y',z')，如果不能则

2026/01/17 04:37 5/9 唱跳rap打代码

CVBB ACM Team - https://wiki.cvbbacm.com/

输出-1。

算法思路

只考虑x，每3次操作，x会变成a[b[c[x]]],维护px[i]为i经过3次操作变成了px[i]，则px[i]也是n的一个排列。x按
照x=px[x]的规则变换，该变换会在px中形成若干个环，我们预处理出每个x在px中参与的环长度cir[x]和
在环中的位置dis[x]，同时记录每个x所属环的编号。那么最终x到达x'的操作次数为dis[x']-dis[x]+k*cir[x]。
对a，b，c三个排列都按如上方式处理。

查询时，只需求是否存在一组k1，k2，k3，使得dis[x']-dis[1]+k1*cir[x']=dis[y']-dis[1]+k2*cir[y']=dis[z']-
dis[1]+k3*cir[z'].

即求同余方程组：（用扩展中国剩余定理）

T=(dis[x']-dis[1])%cir[x']

T=(dis[y']-dis[1])%cir[y']

T=(dis[z']-dis[1])%cir[z']

由于该预处理方法是每三个一跳，遍历三组初始
值x=1，y=1，z=1、x=a[1]，y=b[1]，z=c[1]、x=a[b[1]]，y=b[c[1]]，z=c[a[1]]，每组求出一个T，最终每组的
答案分别为3*T+i(i=0,1,2)，取最小值。

无解情况：x'与x不在同一个环上，或方程组无解。

AC代码

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1e5+50;
ll n,q;
ll a[3][maxn];
bool f[3][maxn];
ll p[3][maxn];
ll dis[3][maxn];
ll cir[maxn];
int ma[3][maxn];
int cnt;
int getstart(int u,int v,int id){
 if(ma[id][u]!=ma[id][v])return -1;
 int tmp=dis[id][v]-dis[id][u];
 return tmp<0?tmp+cir[ma[id][u]]:tmp;
}
ll mul(ll a,ll b,ll mod){
 ll res=0;
 while(b){
 if(b&1){
 res=(res+a)%mod;
 }
 a=(a+a)%mod;
 b>>=1;

Last
update:
2023/07/19
10:43

2023-2024:teams:ikun_is_coding:front_page https://wiki.cvbbacm.com/doku.php?id=2023-2024:teams:ikun_is_coding:front_page&rev=1689734612

https://wiki.cvbbacm.com/ Printed on 2026/01/17 04:37

 }
 return res;
}
ll ex_gcd(ll A,ll B,ll &x,ll &y){
 if(B==0){
 x=1;
 y=0;
 return A;
 }
 ll d=ex_gcd(B,A%B,y,x);
 y-=A/B*x;
 return d;
}
int main(){
 cin>>n;
 memset(dis,-1,sizeof(dis));
 for(int i=0;i<3;i++){
 for(int j=1;j<=n;j++){
 cin>>a[i][j];
 }
 }
 for(int i=1;i<=n;i++){
 p[0][i]=a[0][a[1][a[2][i]]];
 p[1][i]=a[1][a[2][a[0][i]]];
 p[2][i]=a[2][a[0][a[1][i]]];
 }
 for(int i=1;i<=n;i++){
 for(int j=0;j<3;j++){
 if(ma[j][i])continue;
 ma[j][i]=++cnt;
 dis[j][i]=0;
 int k=i,len=0;
 do{
 ma[j][p[j][k]]=cnt;
 dis[j][p[j][k]]=dis[j][k]+1;
 k=p[j][k];
 len++;
 }while(i!=k);
 cir[cnt]=len;
 }
 }
 cin>>q;
 ll x,y,z;
 while(q--){
 cin>>x>>y>>z;
 ll ans=-1;
 for(int i=0;i<3;i++){
 int x1=1,y1=1,z1=1;
 if(i==1){

2026/01/17 04:37 7/9 唱跳rap打代码

CVBB ACM Team - https://wiki.cvbbacm.com/

 x1=a[0][1];
 y1=a[1][1];
 z1=a[2][1];
 }
 if(i==2){
 x1=a[0][a[1][1]];
 y1=a[1][a[2][1]];
 z1=a[2][a[0][1]];
 }
 int st[3];
 st[0]=getstart(x1,x,0);
 st[1]=getstart(y1,y,1);
 st[2]=getstart(z1,z,2);
 int c[3];
 c[0]=cir[ma[0][x]];
 c[1]=cir[ma[1][y]];
 c[2]=cir[ma[2][z]];
 //solve the equations by using ex_CRT
 //t=st[0] (mod c[0])
 //t=st[1] (mod c[1])
 //t=st[2] (mod c[2])
 if(st[0]<0||st[1]<0||st[2]<0)continue;
 ll m=c[0];
 ll tmp=st[0];
 for(int i=1;i<3;i++){
 //solve the equation:
 //tmp + X*m = st[i] (mod c[i])
 //X*m + Y*c[i] = st[i]-tmp
 //d = gcd(m,c[i]);
 //-->X*(m/d) + Y*(c[i]/d) = (st[i]-tmp)/d
 ll X,Y;
 ll d=ex_gcd(m,c[i],X,Y);
 if((tmp-st[i])%d!=0){
 tmp=-1;
 break;
 }
 //find the minimum solution:X = X * (st[i]-tmp)/d %
(c[i]/d);
 X=mul(X,((st[i]-tmp%c[i]+c[i])%c[i])/d,c[i]/d);
 tmp=tmp+X*m;
 m=m*c[i]/d;
 tmp=(tmp%m+m)%m;
 }
 if(tmp==-1)continue;
 if(ans==-1)ans=tmp*3+i;
 else ans=min(ans,tmp*3+i);
 }
 cout<<ans<<endl;
 }
 return 0;
}

Last
update:
2023/07/19
10:43

2023-2024:teams:ikun_is_coding:front_page https://wiki.cvbbacm.com/doku.php?id=2023-2024:teams:ikun_is_coding:front_page&rev=1689734612

https://wiki.cvbbacm.com/ Printed on 2026/01/17 04:37

M

知识点总结

扩展中国剩余定理

解同余方程组

x=r[i](mod m[i]),i=0,1,…,n-1

注意模数m可能不两两互质

遍历i=1,2,3…,n-1,每次解方程x*+t*M=r[i](mod m[i]),即t*M+k*m[i]=r[i]-x*,其中x*为之前i-1个方程的一
个解，M为前i-1个m的最小公倍数

最后解为x*+k*lcm(m[i])

模板（缩略版）

ll m[n],r[n];
ll ex_CRT(){
 ll M=m[0];
 ll tmp=r[0];
 for(int i=1;i<n;i++){
 ll X,Y;
 ll d=ex_gcd(M,m[i],X,Y);
 if((tmp-r[i])%d!=0){
 tmp=-1;
 //no solution
 break;
 }
 //mul() is a fast multiply which prevents overflow
 //just like fast power
 X=mul(X,((r[i]-tmp%m[i]+m[i])%m[i])/d,m[i]/d);
 //X = X*(r[i]-tmp)%(c[i]/d)
 tmp=tmp+X*M;
 M=M*c[i]/d;//update M=lca(m[i])
 tmp=(tmp%M+M)%M;//make the solution positive
 }
 return tmp;
}

2026/01/17 04:37 9/9 唱跳rap打代码

CVBB ACM Team - https://wiki.cvbbacm.com/

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2023-2024:teams:ikun_is_coding:front_page
&rev=1689734612

Last update: 2023/07/19 10:43

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2023-2024:teams:ikun_is_coding:front_page&rev=1689734612
https://wiki.cvbbacm.com/doku.php?id=2023-2024:teams:ikun_is_coding:front_page&rev=1689734612

	唱跳rap打代码
	训练记录
	训练题解
	牛客1
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M

	知识点总结
	扩展中国剩余定理

