2025/08/04 01:34 1/3 牛客多校5

牛客多校5

比赛时间	比赛名称	赛中过题	总计过题	题目总数	罚时	Dirt	校内排名
25.07.29	牛客多校5	3	5	13	539	5/8	17/19

赛时

100:09+0

Ender_hz: 直接考虑面积 \$S=1+2+\cdots +n=\dfrac{n(n+1)}{2}\$□可以证明这样拼成的矩形周长最小(最长边长度 \$\ge n\$□□

J02:37+5

Ender_hz: 一开始想着答案可能的范围,最后发现二分的时候好像用不到。

- +1: 二分模板没改完全(边界);
- +2: 瞎改一通,避免了编译时的 warning□
- +3: 重构代码,把用数组维护边界改成了在 check 内部找边界;
- +4: 发现了 tm 没有赋初值导致的二分越界和全部为 \$1\$ 的情况, 但是没有考虑全部为 \$0\$ 的情况;
- +5: 发现了全部为 \$0\$ 的情况以及判定边界能否覆盖时的错误。

E 04:32 + 0

istina: 最幽默的一集,封榜后才成功签到。定义【神秘异或】的运算结果是把异或从低位数起第偶数个 \$1\$ 删去。给定 \$n\$ 个正整数,求所有无序对神秘异或和。考虑按位考虑,当前对 \$(n, m)\$ 在第 \$i\$ 位对 答案有贡献当且仅当 \$(n\oplus m)_i == 1\$ 且 \$\sum_{j=0}^{i-1}(n\oplus m)_j\$ 是偶数。注意到 \$\sum_{j=0}^{i-1}(n\oplus m)_j = \sum_{j=0}^{i-1}n_j + \sum_{j=0}^{i-1}m_j - 2 \sum_{j=0}^{i-1}(n\& m)_j\$ □而最后一项是偶数,因此只需要分别考虑 \$n\$ 和 \$m\$ 各自前 \$i\$ 位和的 奇偶性。开四个变量分别记录当前位为 \$0/1\$,低位和为 \$奇/偶\$ 的数量即可,将各位贡献累加即可。

赛后

H□_istina_ 补)

这题的难度相当一部分来自于冗长的题面,我费了老大劲才把原题面中 Civilization VI 的元素换成了数学语言。赛时也是被这题面吓到以为是大模拟。

首先显然可以二分答案,将问题转化成给定 \$p\$ □判定方案存在性。

考虑 \$dp\$ 来做。令 \$dp {i,j,l}\$ 表示前 \$i\$ 次操作中,已经使 \$a j=0\$□选择了 \$l\$ 次 \$b {\{j+1 \ldots

n\}}\$ 中元素的情况下 \$cnt\$ 的最大值。

设 \$sum_i = m+\sum_{j=1}^{i}k j\$ []有如下三种转移:

• 第 \$i\$ 次操作选择增加 \$cnt\$□

 $$$ dp {i,i,l}+sum j\to dp {i+1,i,l+1} $$$

• 通过若干次操作使 \$a {j+1}\to0\$□未触发 \$a i\to \max\{a i - c i, 0\}\$□□

● 通过若干次操作使 \$a_{j+1}\to0\$□触发 \$a_i\to \max\{a_i - c_i, 0\}\$□□

 $\ \phi_{i,j,l}\to \phi_{i+\perp,j+1,l-\leq \{j+1\}} \$ \right \rceil, j+1,l-\left \lceil \frac{b {j+1}}{p} \right \rceil + \left \lceil \frac{a {j+1}} - c {j+1}}{sum j} \right \rceil} \$\$

存在某 \$dp {i,j,l}\geq s\$ 则方案存在。

注意写好转移时的边界条件,并特判 \$p=0\$ 的情况即可。

时间复杂度 \$\mathcal O(t^2n\log b)\$ □可以通过本题。

L□_istina_ 补)

https://wiki.cvbbacm.com/

将总期望尝试次数拆成 b > 0 和 b = 0 两部分(可能在第一部分中已经达成目标,那么第二部分就没有被经过)

再考虑 \$b = 0\$ 的情形。这一部分的期望尝试次数是好计算的。

设从 \$a\$ 从 \$0\$ 到 \$i\$ 期望尝试次数为 \$D_i\$ \square 从 \$i - 1\$ 到 \$i\$ 的期望尝试次数为 \$d_i\$ \square 则可以得到以下式子 \square \$\$ \begin{align} \begin{cases} d_i = p + (1 - p) (D_i+1) \\ d_i = D_i - D_{i - 1} \end{cases} \end{align} \$\$ 可以解得 \square \$\$ pD_i = D_{i - 1} + 1 p(D_i + \frac{1}{1-p}) = D_{i - 1} + \frac{1}{1 - p} D_i = \frac{1 - p^i}{(1 - p)p^i} \$\$ 而进入第二部分的概率就是是简单的 \$\$ z(1-p)\$ \square 将概率和期望尝试

Printed on 2025/08/04 01:34

总体上时间复杂度为 \$\mathcal O (m\log m)\$ □可通过预处理逆元优化为线性。

总结

Ender_hz:

istina: 在宿舍里打的究极坐牢场,到都签不出。

MeowScore:

From:

https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:

 $https://wiki.cvbbacm.com/doku.php?id = 2025-2026: teams: the_server_is_busy_please_try_again_later: 20250729. The property of the property o$



