
2026/01/14 15:59 1/7 数论分块

CVBB ACM Team - https://wiki.cvbbacm.com/

数论分块

简介

数论分块的目的是：将有除法下取整的式子，从$O(n)$优化到$O(\sqrt{n})$。

它就是换了一种计数顺序，从纵向计数改为横向计数（Fubini原理），将n/d相同的数打包同时计算。

（以下若未采用公式体写的n/d，均代表C语言中带取整的整数除法，而不是数学意义上的除法。）

直观表示就是：我们看下面这个双曲线（的一支）图片，思考双曲线下整点的划分。

图中共分为了5块，这5块整点的最大纵坐标都相同。

数论分块的核心代码很简单：

int l=1,r;
while(l<=n)
{
 r=min(n,n/(n/l));
 //中间的部分要具体问题具体分析
 l=r+1;
}

这是因为，C语言的整数除法，恰好全部都是向下取整。（这里用中括号表示）

因此，关键就在于表达式n/(n/l)究竟是什么。即这个表达式：

$$\left[\frac{n}{\left[\frac{n}{l}\right]}\right]$$

Last
update:
2020/06/03
11:12

technique:number_theory_sqrt_decomposition https://wiki.cvbbacm.com/doku.php?id=technique:number_theory_sqrt_decomposition&rev=1591153937

https://wiki.cvbbacm.com/ Printed on 2026/01/14 15:59

在“分块”计算的时候，对于任意一个d，我们需要找到一个最大的r，使得n/d=n/r。目的是确定d落入了哪
一块。

我们指出：表达式n/(n/d)，恰好就是使得n/d不变的那个最大的r。

因此每次将l更新为r+1，就是下一个左端点。上面n/(n/l)的式子就是为了寻找图中绿色的点，即每一块的右
端点。

证明

首先，n/(n/l)不比给定的l小。这是显然的,把里面的取整符号放缩掉就行。

$$\left[\frac{n}{\left[\frac{n}{l}\right]}\right]\geqslant\left[\frac{n}{\frac{n}{l}}\right]=l$$

然后，n/(n/l)代入（迭代）原式，同理有n/(n/(n/l))不比n/l小。

但是由于没取整前，图形是双曲线，n/x这个函数是单调不增的。对于不同的x大小关系，代入函数后大小
关系相反。这只能表明n/(n/(n/l))与n/l相等。即：

$$\left[\frac{n}{\left[\frac{n}{\left[\frac{n}{l}\right]}\right]}\right]=\left[\frac{n}{l}\right]$$

这说明，l和n/(n/l)一定位于同一块中。

怎么说明n/(n/l)是右端点？只要说明下一个邻居已经不落在区间里就行了。根据带余除法，有：

$$\begin{aligned}n&=x\left[\frac{n}{x}\right]+r_1\\&=x\left(1+\left[\frac{n}{x}\right]\right)-(x-
r_1)\\&=\left(1+\left[\frac{n}{x}\right]\right)\left[\frac{n}{1+\left[\frac{n}{x}\right]}\right]+r_2\end
{aligned}$$

其中，r_2非负，x-r_1是严格大于0的正整数。这样，我们就证明了：

$$x\left(1+\left[\frac{n}{x}\right]\right)<\left(1+\left[\frac{n}{x}\right]\right)\left[\frac{n}{1+\left[\f
rac{n}{x}\right]}\right]$$

代入x为n/l：

$$\left[\frac{n}{l}\right]<\left[\frac{n}{1+\left[\frac{n}{\left[\frac{n}{l}\right]}\right]}\right]$$

n/l严格比n/(1+(n/(n/l)))小，因此原命题也就证完了。

除法取整的突变问题

上面的讨论，解决了n/d，在下方的d不断增加的情况下，什么时候函数值发生突变。并且，这种增加是单
向的，计算时只能让d从小往大变化，因为采用这种方法无法找到左端点。

那么如果下方的d不变，上方的n变化，会发生什么？答案是变简单了。

考虑表达式：n和n-1除以d的商取整之差。

2026/01/14 15:59 3/7 数论分块

CVBB ACM Team - https://wiki.cvbbacm.com/

$$\left[\frac{n}{d}\right]-\left[\frac{n-1}{d}\right]$$

根据带余除法的定义，有：

$$n=d\left[\frac{n}{d}\right]+r_1$$ $$n-1=d\left[\frac{n-1}{d}\right]+r_2$$

r_1和r_2是余数，都在0到d-1之间。因此这个表达式，仅当d整除n的时候相差1，其他时候均为0。

一个常用引理

引理

一个狄利克雷卷积式的推广，本式有两个变量n和a。当n和a相等的时候，就是一个标准的狄利克雷卷积式。

$$ \sum_{i=1}^{n}(i,a)=\sum_{d|a}\left[\frac{n}{d}\right]\varphi(d) $$

它的推论是：

$$\sum_{i=l}^{r}(i,a)=\sum_{d|a}\left(\left[\frac{r}{d}\right]-
\left[\frac{l-1}{d}\right]\right)\varphi(d)$$

证明

由狄利克雷卷积$\varphi*1=n$，有：

$$ (n,a)=\sum_{d|(a,n)}\varphi(d)=\sum_{d|a \&\& d|n}\varphi(d) $$

根据上面的讨论，有：

$$ (n,a)=\sum_{d|a}\left(\left[\frac{n}{d}\right]-\left[\frac{n-1}{d}\right]\right)\varphi(d) $$

利用数学归纳法对n归纳，或两边同时计算部分和，就证明了原命题。

例题

题目

计算：

$$ \sum_{i=1}^n(\left[^3\sqrt{i}\right],i)\quad\mod 998244353\quad n\leq10^{21} $$

题解

分析这个问题。完全立方数将1到n划分为许许多多左闭右开的整数区间，那么最后一个区间是不完全的。
因此对立方数进行划分，并单独提取出最后一个不完全区间：

$$
\sum^n_{i=1}(\left[^3\sqrt{i}\right],i)=\sum_{i=1}^{\left[^3\sqrt{n}\right]-1}\sum_{j=i^3}^{(i+1

Last
update:
2020/06/03
11:12

technique:number_theory_sqrt_decomposition https://wiki.cvbbacm.com/doku.php?id=technique:number_theory_sqrt_decomposition&rev=1591153937

https://wiki.cvbbacm.com/ Printed on 2026/01/14 15:59

)^3-1}(i,j)+\sum^n_{i=\left[^3\sqrt{n}\right]^3}(\left[^3\sqrt{n}\right],i) $$

根据引理，对于原式右半部分的内容我们便可以通过数论分块在$O(^6\sqrt{n})$的时间内解决。

$$
\sum^n_{i=\left[^3\sqrt{n}\right]^3}(\left[^3\sqrt{n}\right],i)=\sum_{d|\left[^3\sqrt{n}\right]}\left(
\left[\frac{n}{d}\right]-\left[\frac{\left[^3\sqrt{n}\right]^3-1}{d}\right]\right)\varphi(d) $$

继续展开左边的式子。由求和式中d整除i，设变量x满足$xd=i$，交换求和次序并去取整号整理得：

$$ \begin{aligned} &\sum_{i=1}^{\left[^3\sqrt{n}\right]-1}\sum_{j=i^3}^{(i+1)^3-1}(i,j)\\
=&\sum_{i=1}^{\left[^3\sqrt{n}\right]-1}\sum_{d|i}\left(\left[\frac{(i+1)^3-1}{d}\right]-
\left[\frac{i^3-1}{d}\right]\right)\varphi(d)\\
=&\sum_{d=1}^{\left[^3\sqrt{n}\right]-1}\varphi(d)\sum_{x=1}^{\left[\frac{\left[^3\sqrt{n}\right]
-1}{d}\right]}\left(\left[\frac{(xd+1)^3-1}{d}\right]-\left[\frac{(xd)^3-1}{d}\right]\right)\\
=&\sum_{d=1}^{\left[^3\sqrt{n}\right]-1}\varphi(d)\sum_{x=1}^{\left[\frac{\left[^3\sqrt{n}\right]
-1}{d}\right]}\left(3dx^2+3x+1\right) \end{aligned} $$

接下来就是平方和公式和等差数列求和，设仅与d相关的y为：

$$y=\left[\frac{\left[^3\sqrt{n}\right]-1}{d}\right]$$

得：

$$
\sum_{i=1}^{\left[^3\sqrt{n}\right]-1}\sum_{j=i^3}^{(i+1)^3-1}(i,j)=\sum_{d=1}^{\left[^3\sqrt{
n}\right]-1}\varphi(d)d\frac{y(y+1)(2y+1)}{2}+\sum_{d=1}^{\left[^3\sqrt{n}\right]-1}\varphi(d)(\f
rac{y(y+1)}{2}+y) $$

y也是一个除以d后取整的形式，故依旧可以用数论分块维护。总和式为：

$$
\sum^n_{i=1}(\left[^3\sqrt{i}\right],i)=\sum_{d=1}^{\left[^3\sqrt{n}\right]-1}\varphi(d)d\frac{y(y
+1)(2y+1)}{2}+\sum_{d=1}^{\left[^3\sqrt{n}\right]-1}\varphi(d)(\frac{y(y+1)}{2}+y)+\sum_{d|\l
eft[^3\sqrt{n}\right]}\left(\left[\frac{n}{d}\right]-
\left[\frac{\left[^3\sqrt{n}\right]^3-1}{d}\right]\right)\varphi(d) $$

通过$O(^3\sqrt{n})$预处理出$\sum \varphi(i)i$和$\sum \varphi(i)$,就可以在$O(^{6}\sqrt{n})$的时间
内处理每一组询问了。总时间复杂度$O(^3\sqrt{n}+^{6}\sqrt{n}*T)$

注意，读入要用__int128,但是在开数组的时候都要开int，否则会爆空间。

代码

#include<bits/stdc++.h>

using namespace std;

inline __int128 read()
{

2026/01/14 15:59 5/7 数论分块

CVBB ACM Team - https://wiki.cvbbacm.com/

 __int128 x=0,f=1;
 char c=getchar();
 while(!isdigit(c))
 {
 if(c=='-')f=-1;
 c=getchar();
 }
 while(isdigit(c))
 {
 x=x*10+c-'0';
 c=getchar();
 }
 return x*f;
}

__int128 n,ans;
const int MOD=998244353,maxN=10000000;
int
T,prime[maxN+10],len,A,sqrt3N,phi[maxN+10],phii[maxN+10],pre[maxN+10],inv2=
499122177;
bool vis[maxN+10];

void calc()//线性筛计算欧拉函数
{
 phi[1]=1;
 phii[1]=1;
 int i;
 for(i=2;i<=maxN;i++)
 {
 if(!vis[i])
 {
 prime[++len]=i;
 phi[i]=i-1;
 }
 int j;
 for(j=1;j<=len&&i*prime[j]<=maxN;j++)
 {
 vis[i*prime[j]]=1;
 if(i%prime[j]==0)
 {
 phi[i*prime[j]]=phi[i]*prime[j];
 break;
 }
 phi[i*prime[j]]=phi[i]*(prime[j]-1);
 }
 }
 for(i=1;i<=maxN;i++)//欧拉函数乘自变量，其实也是个积性函数
 {
 phii[i]=((long long)i*(long long)phi[i])%MOD;
 }
 for(i=1;i<=maxN;i++)//部分和

Last
update:
2020/06/03
11:12

technique:number_theory_sqrt_decomposition https://wiki.cvbbacm.com/doku.php?id=technique:number_theory_sqrt_decomposition&rev=1591153937

https://wiki.cvbbacm.com/ Printed on 2026/01/14 15:59

 {
 pre[i]=((long long)pre[i-1]+(long long)phi[i])%MOD;
 phii[i]=((long long)phii[i-1]+(long long)phii[i])%MOD;
 }
}

__int128 sqrt3(__int128 N)//二分
{
 __int128 l=0,r=1e9;
 while(r-l>1)
 {
 __int128 mid=(l+r)/2;
 if(mid*mid*mid<N)l=mid;
 else r=mid;
 }
 return (r*r*r<=N) ? r : l;
}

int main()
{
 calc();
 scanf("%d",&T);
 while(T--)
 {
 n=read();
 sqrt3N=(int)sqrt3(n);
 __int128 ans=0;
 for(int d=1;d*d<=sqrt3N;d++)
 {
 if(sqrt3N%d==0)
 {
 ans=(ans+(n/d-
((__int128)sqrt3N*(__int128)sqrt3N*(__int128)sqrt3N-1)/d)%MOD*phi[d])%MOD;
 if(d*d!=sqrt3N)
 {
 int t=sqrt3N/d;
 ans=(ans+(n/t-
((__int128)sqrt3N*(__int128)sqrt3N*(__int128)sqrt3N-1)/t)%MOD*phi[t])%MOD;
 }
 }
 }
 for(int l=1,r=0;l<=sqrt3N-1;l=r+1)
 {
 int x=(sqrt3N-1)/l;
 r=min(sqrt3N-1,(sqrt3N-1)/((sqrt3N-1)/l));//分块操作
 long long tmp1=(phii[r]-phii[l-1]+MOD)%MOD,tmp2=(pre[r]-
pre[l-1]+MOD)%MOD;
 ans=(ans+tmp1*(long long)inv2%MOD*x%MOD*(x+1)%MOD*(2*x+1))%MOD;
ans=((ans+tmp2*(x+1)%MOD*x%MOD*inv2%MOD*3%MOD)%MOD+x*tmp2%MOD)%MOD;
 }

2026/01/14 15:59 7/7 数论分块

CVBB ACM Team - https://wiki.cvbbacm.com/

 cout<<(long long)ans<<endl;
 }
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=technique:number_theory_sqrt_decomposition&rev=1591153937

Last update: 2020/06/03 11:12

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=technique:number_theory_sqrt_decomposition&rev=1591153937

	数论分块
	简介
	证明
	除法取整的突变问题
	一个常用引理
	引理
	证明

	例题
	题目
	题解
	代码

