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int 1=1,r
1l<=n

r=min(n,n/(n/1
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l=r+1
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$$\left[\frac{n} {\left[\frac{n} {I}\right]}\right]$$
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$$\left[\frac{n} {\left[\frac{n} {I}\right]\right\gegslant\left[\frac{n} {\frac{n} {1} HNright]=I$$
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s$\left[\frac{n} {\left[\frac{n}{\left[\frac{n} {I}\right] N\right]}\right]=\left[\frac{n} {I }\right]$$
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$$\begin{aligned}n&=x\left[\frac{n} {x}\right]+r_1\\&=x\left(1+\left[\frac{n} {x}\right]\right)-(x-
r_ I\&=\left(1+\left[\frac{n} {x}\rightl\right)\left[\frac{n} { 1+\left[\frac{n} {x}\right]}\right]+r_2\end
{aligned}$$
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$sx\left(1+\left[\frac{n} {x}\right\right)<\left(1+\left[\frac{n} {x}\right]\right\left[\frac{n} {1 +\left[\f
rac{n}{x}\right]}\right]$$
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$s\left[\frac{n} {I}\rightl<\left[\frac{n} {1+\left[\frac{n} {\left[\frac{n} {I}\right]}\right]}\right]$$
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$s\left[\frac{n} {d}\right]-\left[\frac{n-1} {d}\right]$$
oooooooo0oooo
$$n=d\left[\frac{n}{d}\right]+r 1$$ $$n-1=d\left[\frac{n-1} {d}\right]+r 2$$
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$$ \sum_{i=1}"{n}(i,a)=\sum_{d|a}\left[\frac{n}{d}\right]\varphi(d) $$

gooognd

$$\sum_{i=I}"~{r}(i,a)=\sum_{d|a}\left(\left[\frac{r} {d}\right]-

\left[\frac{I-1} {d}\right]\right)\varphi(d)$$
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$$ (n,a)=\sum_{d|(a,n) }\varphi(d)=\sum_{d|a \&\& d|n}\varphi(d) $$

gobogobooaod

$$ (n,a)=\sum_{d|a}\left(\left[\frac{n}{d}\right]-\left[\frac{n-1}{d}\right]\right)\varphi(d) $$
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$$ \sum_{i=1}"n(\left[~3\sqrt{i}\right],i)\quad\mod 998244353\quad n\leql0~{21} $$
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$$
\sum”™n_{i=1}(\left[~3\sqrt{i}\right],i)=\sum_{i=1}"~{\left[~3\sqrt{n}\right]-1}\sum_{j=i"3}~{(i+1
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$$
\sum”™n_{i=\left[~3\sqrt{n}\right]~3}(\left[~3\sqrt{n}\right],i)=\sum_{d\left[ ~3\sqrt{n}\right]}\left(
\left[\frac{n} {d}\right]-\left[\frac{\left[ ~ 3\sqrt{n}\right]~3-1} {d}\right]\right)\varphi(d) $$

0000000000000 00dO0ipDoOxOO$xd=i$0 0000000 000DOO0Od

$$ \begin{aligned} &\sum_{i=1}"{\left[~3\sqrt{n}\right]-1\sum_{j=i"3}~{(i+1)"~3-1}(i,j)\\
=&\sum_{i=1}"{\left[~3\sqrt{n}\right]-1}\sum_{d|i}\left(\left[\frac{(i+1)"~3-1}{d}\right]-
\left[\frac{i"3-1} {d}\right]\right)\varphi(d)\\
=&\sum_{d=1}"{\left[~3\sqrt{n}\right]-1}\varphi(d)\sum_{x=1}"~{\left[\frac{\left[ ~3\sqrt{n}\right]
-1} {d}\right]}\left(\left[\frac{(xd+1)"3-1} {d}\right]-\left[\frac{(xd)~3-1} {d }\right]\right)\\
=&\sum_{d=1}"{\left[~3\sqrt{n}\right]-1}\varphi(d)\sum_{x=1}"~{\left[\frac{\left[ ~3\sqrt{n}\right]
-1} {d}\right]}\left(3dx"~2+3x+1\right) \end{aligned} $$

0000000000000 oDOoooooddnogydd
$$y=\left[\frac{\left[~3\sqrt{n}\right]-1} {d}\right]$$

oo

$$
\sum_{i=1}"~{\left[~3\sqrt{n}\right]-1\sum_{j=i"3}"{(i+1)"3-1}(i,j)=\sum_{d=1}"{\left[~3\sqrt{

nHright]-1H\varphi(d)d\frac{y(y+1)(2y+1)} {2} +\sum_{d=1}"{\left[~3\sqrt{n}\right]-1}\varphi(d)(\f
rac{y(y+1)}{2}+y) $3$
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$$
\sum”n_{i=1}(\left[~3\sqrt{i}\right],i)=\sum_{d=1}"{\left[~3\sqrt{n}\right]-1}\varphi(d)d\frac{y(y
+1)(2y+1)} {2} +\sum_{d=1}"{\left[~3\sqrt{n}\right]-1}\varphi(d)(\frac{y(y+1)} {2} +y)+\sum_{d|\I
eft[~3\sqrt{n}\right]}\left(\left[\frac{n} {d }\right]-

\left[\frac{\left[~3\sqrt{n}\right]~3-1} {d}\right]\right)\varphi(d) $$

00 $0("~3\sqrt{n})$0 O O O $\sum \varphi(i)i$0 $\sum \varphi(i)$,0 0 O O $O(~{6}\sqrt{n})$0 O O
D000DO00DO00DOoooooOgoso(™3\sgrt{n}+~{6}\sqrt{n}*T)$
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#include<bits/stdc++.h>
using namespace std;

inline int128 read
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~int128 x=0,f=1;
char c=getchar();
lisdigit(c

C::'-I f:- 5
c=getchar();
isdigit(c
X=x*10+c-'0";

c=getchar();

x*f:

_1nt128 n,ans;

const int MOD= ,maxN= ;
int

T,prime maxN+ ,Llen,A,sqrt3N, phi maxN+

bool vis[maxN+ :
void calc()/ODOOOOOOOO
phi[1]=1;
phii[1l]=1;
int i;
i=2;i<=maxN; i++

lvis[i

prime|[++len|=i;
philil=i-1;

int j;

,phii|maxN+

j=1;j<=len&&i*prime|j | <=maxN; j++

vis| i*prime|j||/=1;
i%sprimelj|==

phili*prime[j||=phi(i/*primel[j/;

.
’

phili*prime|[j | |=phili/*(prime[j|-1);

i=l;i<=maxN;i++)/ 0000000000000 DOOOO0O

phii[i]=((long long)i*(long long)phi[i])%MOD;

i=1;i<=maxN;i++)//0] [ [

,pre[maxN+

,inv2=
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pre(il=((long long)pre[i-1]+(long long)phi[i])%MOD;
phii[i]=((long long)phii[i-1]+(long long)phii[i])%MOD;

_intl128 sqrt3(_ int128 N)//[][]

_int128 1=0,r=1e9;
r-1>

~int128 mid=(1+r)/2;
mid*mid*mid<N)l=mid;
r=mid;

rxr¥r<=N) ? r : 1;

int main

calc();
scanf("%sd",&T) ;
T--

n=read!( ) ;
sqrt3N=(int)sqrt3(n);
_int128 ans=0;

int d=1;d*d<=sqrt3N;d++

sqrt3N%sd==

ans=(ans+(n/d-
_int128)sqrt3N*(  int128)sqrt3N*( int128)sqrt3N-1)/d)%sMOD*phi/d! ) %MOD;
d*d!=sqrt3N

int t=sqrt3N/d;
ans=(ans+(n/t-
_int128)sqrt3N*(  intl28)sqrt3N*( int128)sqrt3N-1)/t)%MOD*philt]|)%MOD;

int 1=1,r=0;1l<=sqrt3N-1;l=r+

int x=(sqrt3N-1)/1;

r=min(sqrt3N-1, (sqrt3N-1)/((sqrt3N-1)/1));//0 ][]

long long tmpl=(phii(r]-phii[l-1]+MOD)%MOD, tmp2=(prel(r]-
pre[1l-11+MOD)%MOD;

ans=(ans+tmpl*(long Llong)inv2%MOD*x%MOD* ( x+1)%MOD* (2*x+1) )%MOD;
ans=( (ans+tmp2*(x+1)%MOD*x%MOD*1inv2%MOD*3%MOD ) %MOD+x*tmp2%MOD ) %M0OD ;
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cout<<(long long)ans<<endl;
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