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int 1=1,r
1l<=n

r=min(n,n/(n/1
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l=r+1
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$$\left[\frac{n} {\left[\frac{n} {I}\right]}\right]$$
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$$\leftl\frac{n}{\left\frac{n}{I}right]}\rightl\gegslant\left[\frac{n}{\frac{n}{I} Nright]=1$$
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$s$\left[\frac{n} {\left[\frac{n}{\left[\frac{n} {I}\right] }\right] }\right]\geqgslant\left[\frac{n} {I}\right]$$
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s$s\left\frac{n} {\left[\frac{n} {\left[\frac{n} {I}\right] }\right]}\right]=\left[\frac{n} {I}\right]$$
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$$\begin{aligned}n&=x\left[\frac{n} {x}\right]+r_1\\&=x\left(1+\left[\frac{n} {x}\right]\right)-(x-
r 1\&=\left(1+\left[\frac{n} {x}\right]\right\left[\frac{n}{1+\left[\frac{n} {x}\right]}\right]+r 2\end
{aligned}$$
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$sx\left(L+\left[\frac{n} {x}\right]\right) <\left(1+\left[\frac{n} {x}\right©\right)\left[\frac{n} { 1+\left[\f
rac{n}{x}\right]}\right]$$
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$$\left[\frac{n} {IN\right]<\left[\frac{n} {1+\left[\frac{n} {\left[\frac{n} {I}\right]}\right]}\right]$$
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$$\left\frac{n}{d Hright]-\left[\frac{n-1} {d }\right]$$
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$$n=d\left[\frac{n}{d}\right]+r 1$$ $$n-1=d\left[\frac{n-1} {d}\right]+r 2$$
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$$ \sum _{i=1}"{n}(i,a)=\sum_{d|a}\left[\frac{n}{d}\right]\varphi(d) $$
ooooon

$$\sum_{i=I}"~{r}(i,a)=\sum_{d|a}\left(\left[\frac{r} {d}\right]-
\left[\frac{I-1} {d}\right]\right)\varphi(d)$$
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$$ (n,a)=\sum_{d|(a,n)}\varphi(d)=\sum_{d|a \&\& d|n}\varphi(d) $$

gobogoboogod

$$ (n,a)=\sum_{d|a}\left(\left[\frac{n}{d}\right]-\left[\frac{n-1}{d}\right]\right)\varphi(d) $$
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$$ \sum_{i=1}"n(\left[~3\sqrt{i}\right],i)\quad\mod 998244353\quad n\leq10~ {21} $$
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$$
\sum~n_{i=1}(\left[~3\sqgrt{i}\right],i)=\sum_{i=1}"{\left[~3\sqrt{n}\right]-1\sum_{j=i"3}"{(i+1
)7 3-13}(i,j)+\sum”n_{i=\left[~3\sqrt{n}\right]~ 3} (\left[ ~3\sqrt{n}\right],i) $$
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$$
\sum~™n_{i=\left[~3\sqgrt{n}\right]~3}(\left[ ~3\sqrt{n}\right],i)=\sum_{d|\left[ ~3\sqrt{n}\right] 1\left(
\left[\frac{n} {d}\right]-\left[\frac{\left[ ~ 3\sqrt{n}\right] "~ 3-1} {d}\right]\right)\varphi(d) $$

0000000000000 00d00IDoOxO00$xd=i$000000000000O00O0

$$ \begin{aligned} &\sum_{i=1}"{\left[~3\sqrt{n}\right]-1}\sum_{j=i"3}"~{(i+1)"~3-1}(i,j)\\
=&\sum_{i=1}"{\left[~3\sqrt{n}\right]-1}\sum_{d|i}\left(\left[\frac{(i+1)~3-1}{d}\right]-
\left[\frac{i"~3-1} {d}\right]\right)\varphi(d)\\
=&\sum_{d=1}"{\left[~3\sqrt{n}\right]-1}\varphi(d)\sum_{x=1}"~{\left[\frac{\left[ ~3\sqrt{n}\right]
-1} {d}right]}\left(\left[\frac{(xd+1)"~3-1} {d}right]-\left[\frac{(xd) "~ 3-1} {d}\right]\right)\\
=&\sum_{d=1}"{\left[~3\sqrt{n}\right]-1}\varphi(d)\sum_{x=1}"{\left[\frac{\left[ ~3\sqrt{n}\right]
-1} {d}\right]}\left(3dx"~2+3x+1\right) \end{aligned} $$

OO0O0000OO0oo0U0OoDoooOooooodOodoooydQ

$sy=\left[\frac{\left[ ~3\sqrt{n\right]-1} {d}\right]$$

o

$$
\sum_{i=1}"{\left[~3\sqrt{n}\right]-1}\sum_{j=i"3}~{(i+1)"3-1}(i,j)=\sum_{d=1}"~{\left[~3\sqrt{

nHright]-1}\varphi(d)d\frac{y(y+1)(2y+1)}{2} +\sum_{d=1}"{\left[~3\sqrt{n}right]-1}\varphi(d)(\f
rac{y(y+1)}{2}+y) $3%

sysOO0oooo0dobooooooooooooooooooooooon

$$
\sum~n_{i=1}(\left[~3\sqrt{i}\right],i)=\sum_{d=1}"~{\left[~3\sqrt{n}\right]-1}\varphi(d)d\frac{y(y
+1)(2y+1)}{2}+\sum_{d=1}"{\left[~3\sqrt{n}\right]-1}\varphi(d)(\frac{y(y+1)} {2} +y)+\sum_{d|\I
eft[~3\sqrt{n}\right] }\left(\left[\frac{n} {d}\right]-

\left[\frac{\left[~3\sqrt{n}\right]~3-1} {d}\right]\right)\varphi(d) $$
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#include<bits/stdc++.h>

using namespace std;
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inline int128 read
_int128 x=0,f=1;
char c=getchar();

lisdigit(c

== f:- ;
c=getchar();

isdigit(c

x=x*10+c-'0";
c=getchar();

x*f;

_int128 n,ans;

const int MOD= , maxN= ;
int
T,prime maxN+ ,len,A,sqrt3N, phi maxN+

’

bool vis/|[maxN+ c
void calc()/00000OOO0O
phi[1]=1;
phii —1l -
int 1i;
i=2;i<=maxN; i++

lvis|i

prime|++len|=i;
philil=i-1;

int j;

,phii[maxN+

j=1;j<=len&&i*prime|j |<=maxN; j++

vis|[i*primel|j||=1;
i%primelj|==

phili*prime[j | |=phi[i/*prime[j|;

’

phili*prime|j||=philil/*(prime[jl-1);

i=1l;i<=maxN;i++)/000000000000O00O0O0O0O0O

phii[il=((long long)i*(long long)phili

%MOD ;

,prelmaxN+

,inv2=
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i=1;i<=maxN;i++)//00 0L

pre[i]=((long long)pre[i-1]+(long long)phi[i
+(long long)phii[i])%MOD;

phii[i]=((long long)phii[i-

_int128 sqrt3( intl128 N)//[1 1]

__int128 1=0,r=1e9;
r-1-

_int128 mid=(1+r)/2;
mid*mid*mid<N)l=mid;
r=mid;

r¥r¥r<=N) ? r : 1;

int main

calc();
scanf("%d",&T) ;
T--

n=read!( ) ;
sqrt3N=(int)sqrt3(n);
~1nt128 ans=0;

int d=1;d*d<=sqrt3N;d++

sqrt3N%sd==
ans=(ans+(n/d-
~int128)sqrt3N*(  intl128)sqrt3N*
d*d!=sqrt3N
int t=sqrt3N/d;

ans=(ans+(n/t-
~1nt128)sqrt3N*(  intl28)sqrt3N*

int 1=1,r=0;1l<=sqrt3N-

int x=(sqrt3N-1)/1;
r=min(sqrt3N-1, (sqrt3N-

long long tmpl=(phiilr!-phiill-

pre[1-1]+MOD)%MOD;

__int128)sqrt3N-

~1int128)sqrt3N-

i l=r+

/((sqrt3N-1)/1

%MOD ;

/d)%MOD*phi d])%MOD;

/t)%MOD*phi [t ])%MOD;

/0000

+MOD ) %MOD , tmp2=(preir|-

ans=(ans+tmpl*(long Llong)inv2%MOD*x%MOD* (x+1)%MOD* (2*x+1) )%MOD;
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ans=( (ans+tmp2* (x+1)%MOD*x%MOD*1nv2%MOD*3%MOD ) %MOD+x*tmp2%MOD ) %MOD ;

cout<<(long long)ans<<endl;
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