=====题意===== 给定一个 $n\times n$ 的正定二次型 $A$ 以及 $1\times n$ 的 $B$,找到 $(x_1,x_2,\cdots,x_n)$ 满足 $X^T A X \le 1$ 并且使得 $BX^T$ 最大,求最大值的平方。$n\le200$ =====题解===== 答案即为 $BA^{-1}B^T$ =====证明===== 这道题即为 $KKT$ 模板。\\ 令 $F(x)=BX^T+\lambda(XAX^T-1)$ 则取极值的条件为$$\begin{cases}B_i+2\lambda\sum_{j=1}^{n}A_{i,j}x_j=0 \\ XAX^T-1\le 0 \\ \lambda (XAX^T-1) = 0 \\ \lambda \ge 0\end{cases}$$ 易知 $X=\frac{-B{(A^{-1})}^T}{2\lambda}$ ,代入 $\lambda (XAX^T-1) = 0 $ 可知 $\frac{BA^{-1}B^T}{4{\lambda}^2}=1$\\ 最大值的平方则为 $(BX^T)(BX^T)=\frac{BA^{-1}B^TBA^{-1}B^T}{4{\lambda}^2}=BA^{-1}B^T$