^ NTT 模数 ^ 表达式 ^ 原根 ^ NTT 模数 ^ 表达式 ^ 原根 ^ | $12289$ | $3\times2^{12}+1$ | $11$ | $13313$ | $13\times2^{10}+1$ | $3$ | | $15361$ | $15\times2^{10}+1$ | $7$ | $18433$ | $9\times2^{11}+1$ | $5$ | | $19457$ | $19\times2^{10}+1$ | $3$ | $25601$ | $25\times2^{10}+1$ | $3$ | | $37889$ | $37\times2^{10}+1$ | $3$ | $39937$ | $39\times2^{10}+1$ | $5$ | | $40961$ | $5\times2^{13}+1$ | $3$ | $50177$ | $49\times2^{10}+1$ | $3$ | | $58369$ | $57\times2^{10}+1$ | $7$ | $59393$ | $29\times2^{11}+1$ | $5$ | | $61441$ | $15\times2^{12}+1$ | $17$ | $64513$ | $63\times2^{10}+1$ | $5$ | | $65537$ | $1\times2^{16}+1$ | $3$ | $70657$ | $69\times2^{10}+1$ | $7$ | | $76801$ | $75\times2^{10}+1$ | $17$ | $79873$ | $39\times2^{11}+1$ | $7$ | | $80897$ | $79\times2^{10}+1$ | $3$ | $83969$ | $41\times2^{11}+1$ | $3$ | | $86017$ | $21\times2^{12}+1$ | $5$ | $87041$ | $85\times2^{10}+1$ | $3$ | | $95233$ | $93\times2^{10}+1$ | $5$ | $101377$ | $99\times2^{10}+1$ | $5$ | | $114689$ | $7\times2^{14}+1$ | $3$ | $119809$ | $117\times2^{10}+1$ | $11$ | | $120833$ | $59\times2^{11}+1$ | $3$ | $133121$ | $65\times2^{11}+1$ | $3$ | | $147457$ | $9\times2^{14}+1$ | $10$ | $151553$ | $37\times2^{12}+1$ | $3$ | | $163841$ | $5\times2^{15}+1$ | $3$ | $176129$ | $43\times2^{12}+1$ | $3$ | | $184321$ | $45\times2^{12}+1$ | $13$ | $188417$ | $23\times2^{13}+1$ | $3$ | | $202753$ | $99\times2^{11}+1$ | $10$ | $249857$ | $61\times2^{12}+1$ | $3$ | | $270337$ | $33\times2^{13}+1$ | $10$ | $286721$ | $35\times2^{13}+1$ | $11$ | | $307201$ | $75\times2^{12}+1$ | $14$ | $319489$ | $39\times2^{13}+1$ | $23$ | | $331777$ | $81\times2^{12}+1$ | $5$ | $380929$ | $93\times2^{12}+1$ | $7$ | | $417793$ | $51\times2^{13}+1$ | $5$ | $430081$ | $105\times2^{12}+1$ | $13$ | | $471041$ | $115\times2^{12}+1$ | $6$ | $557057$ | $17\times2^{15}+1$ | $3$ | | $638977$ | $39\times2^{14}+1$ | $7$ | $737281$ | $45\times2^{14}+1$ | $11$ | | $778241$ | $95\times2^{13}+1$ | $6$ | $786433$ | $3\times2^{18}+1$ | $10$ | | $925697$ | $113\times2^{13}+1$ | $3$ | $974849$ | $119\times2^{13}+1$ | $3$ | | $1032193$ | $63\times2^{14}+1$ | $11$ | $1097729$ | $67\times2^{14}+1$ | $3$ | | $1130497$ | $69\times2^{14}+1$ | $5$ | $1146881$ | $35\times2^{15}+1$ | $3$ | | $1179649$ | $9\times2^{17}+1$ | $19$ | $1196033$ | $73\times2^{14}+1$ | $3$ | | $1376257$ | $21\times2^{16}+1$ | $5$ | $1589249$ | $97\times2^{14}+1$ | $3$ | | $1720321$ | $105\times2^{14}+1$ | $17$ | $1769473$ | $27\times2^{16}+1$ | $5$ | | $1785857$ | $109\times2^{14}+1$ | $3$ | $2424833$ | $37\times2^{16}+1$ | $3$ | | $2654209$ | $81\times2^{15}+1$ | $11$ | $2752513$ | $21\times2^{17}+1$ | $20$ | | $3604481$ | $55\times2^{16}+1$ | $3$ | $3735553$ | $57\times2^{16}+1$ | $5$ | | $5308417$ | $81\times2^{16}+1$ | $5$ | $5767169$ | $11\times2^{19}+1$ | $3$ | | $6684673$ | $51\times2^{17}+1$ | $5$ | $6750209$ | $103\times2^{16}+1$ | $3$ | | $6946817$ | $53\times2^{17}+1$ | $3$ | $7340033$ | $7\times2^{20}+1$ | $3$ | | $7667713$ | $117\times2^{16}+1$ | $10$ | $8257537$ | $63\times2^{17}+1$ | $5$ | | $8519681$ | $65\times2^{17}+1$ | $3$ | $8650753$ | $33\times2^{18}+1$ | $10$ | | $10223617$ | $39\times2^{18}+1$ | $5$ | $11272193$ | $43\times2^{18}+1$ | $3$ | | $12451841$ | $95\times2^{17}+1$ | $3$ | $13238273$ | $101\times2^{17}+1$ | $3$ | | $13631489$ | $13\times2^{20}+1$ | $15$ | $14155777$ | $27\times2^{19}+1$ | $7$ | | $14942209$ | $57\times2^{18}+1$ | $11$ | $16515073$ | $63\times2^{18}+1$ | $5$ | | $21495809$ | $41\times2^{19}+1$ | $3$ | $22806529$ | $87\times2^{18}+1$ | $13$ | | $23068673$ | $11\times2^{21}+1$ | $3$ | $26214401$ | $25\times2^{20}+1$ | $3$ | | $27000833$ | $103\times2^{18}+1$ | $3$ | $28311553$ | $27\times2^{20}+1$ | $5$ | | $29884417$ | $57\times2^{19}+1$ | $5$ | $36175873$ | $69\times2^{19}+1$ | $7$ | | $37224449$ | $71\times2^{19}+1$ | $3$ | $40370177$ | $77\times2^{19}+1$ | $3$ | | $69206017$ | $33\times2^{21}+1$ | $5$ | $70254593$ | $67\times2^{20}+1$ | $3$ | | $81788929$ | $39\times2^{21}+1$ | $7$ | $101711873$ | $97\times2^{20}+1$ | $3$ | | $104857601$ | $25\times2^{22}+1$ | $3$ | $111149057$ | $53\times2^{21}+1$ | $3$ | | $113246209$ | $27\times2^{22}+1$ | $7$ | $120586241$ | $115\times2^{20}+1$ | $6$ | | $132120577$ | $63\times2^{21}+1$ | $5$ | $136314881$ | $65\times2^{21}+1$ | $3$ | | $138412033$ | $33\times2^{22}+1$ | $5$ | $155189249$ | $37\times2^{22}+1$ | $6$ | | $163577857$ | $39\times2^{22}+1$ | $23$ | $167772161$ | $5\times2^{25}+1$ | $3$ | | $169869313$ | $81\times2^{21}+1$ | $5$ | $186646529$ | $89\times2^{21}+1$ | $3$ | | $199229441$ | $95\times2^{21}+1$ | $3$ | $211812353$ | $101\times2^{21}+1$ | $3$ | | $230686721$ | $55\times2^{22}+1$ | $6$ | $249561089$ | $119\times2^{21}+1$ | $3$ | | $377487361$ | $45\times2^{23}+1$ | $7$ | $415236097$ | $99\times2^{22}+1$ | $5$ | | $469762049$ | $7\times2^{26}+1$ | $3$ | $595591169$ | $71\times2^{23}+1$ | $3$ | | $645922817$ | $77\times2^{23}+1$ | $3$ | $754974721$ | $45\times2^{24}+1$ | $11$ | | $880803841$ | $105\times2^{23}+1$ | $26$ | $897581057$ | $107\times2^{23}+1$ | $3$ | | $998244353$ | $119\times2^{23}+1$ | $3$ | $1107296257$ | $33\times2^{25}+1$ | $10$ | | $1224736769$ | $73\times2^{24}+1$ | $3$ | $1711276033$ | $51\times2^{25}+1$ | $29$ | | $1811939329$ | $27\times2^{26}+1$ | $13$ | $2013265921$ | $15\times2^{27}+1$ | $31$ | | $2113929217$ | $63\times2^{25}+1$ | $5$ | $2281701377$ | $17\times2^{27}+1$ | $3$ | | $2483027969$ | $37\times2^{26}+1$ | $3$ | $2717908993$ | $81\times2^{25}+1$ | $5$ | | $2885681153$ | $43\times2^{26}+1$ | $3$ | $3221225473$ | $3\times2^{30}+1$ | $5$ | | $3489660929$ | $13\times2^{28}+1$ | $3$ | $3892314113$ | $29\times2^{27}+1$ | $3$ | | $4630511617$ | $69\times2^{26}+1$ | $5$ | $5838471169$ | $87\times2^{26}+1$ | $7$ | | $7717519361$ | $115\times2^{26}+1$ | $3$ | $7918845953$ | $59\times2^{27}+1$ | $3$ | | $8858370049$ | $33\times2^{28}+1$ | $23$ | $9529458689$ | $71\times2^{27}+1$ | $3$ | | $10871635969$ | $81\times2^{27}+1$ | $7$ | $12348030977$ | $23\times2^{29}+1$ | $5$ | | $13555990529$ | $101\times2^{27}+1$ | $3$ | $14092861441$ | $105\times2^{27}+1$ | $19$ | | $14361296897$ | $107\times2^{27}+1$ | $3$ | $24159191041$ | $45\times2^{29}+1$ | $7$ | | $29796335617$ | $111\times2^{28}+1$ | $5$ | $34896609281$ | $65\times2^{29}+1$ | $3$ | | $52613349377$ | $49\times2^{30}+1$ | $3$ | $75161927681$ | $35\times2^{31}+1$ | $3$ | | $77309411329$ | $9\times2^{33}+1$ | $7$ | $78383153153$ | $73\times2^{30}+1$ | $3$ | | $83751862273$ | $39\times2^{31}+1$ | $11$ | $91268055041$ | $85\times2^{30}+1$ | $3$ | | $99857989633$ | $93\times2^{30}+1$ | $7$ | $110595407873$ | $103\times2^{30}+1$ | $3$ | | $125627793409$ | $117\times2^{30}+1$ | $7$ | $184683593729$ | $43\times2^{32}+1$ | $3$ | | $206158430209$ | $3\times2^{36}+1$ | $22$ | $212600881153$ | $99\times2^{31}+1$ | $5$ | | $236223201281$ | $55\times2^{32}+1$ | $3$ | $313532612609$ | $73\times2^{32}+1$ | $3$ | | $347892350977$ | $81\times2^{32}+1$ | $10$ | $476741369857$ | $111\times2^{32}+1$ | $5$ | | $850403524609$ | $99\times2^{33}+1$ | $13$ | $901943132161$ | $105\times2^{33}+1$ | $13$ | | $970662608897$ | $113\times2^{33}+1$ | $3$ | $1288490188801$ | $75\times2^{34}+1$ | $11$ | | $1460288880641$ | $85\times2^{34}+1$ | $3$ | $1700807049217$ | $99\times2^{34}+1$ | $7$ | | $2027224563713$ | $59\times2^{35}+1$ | $3$ | $2061584302081$ | $15\times2^{37}+1$ | $7$ | | $2748779069441$ | $5\times2^{39}+1$ | $3$ | $2783138807809$ | $81\times2^{35}+1$ | $11$ | | $4123168604161$ | $15\times2^{38}+1$ | $7$ | $5566277615617$ | $81\times2^{36}+1$ | $5$ | | $5841155522561$ | $85\times2^{36}+1$ | $6$ | $6597069766657$ | $3\times2^{41}+1$ | $5$ | | $8040178778113$ | $117\times2^{36}+1$ | $7$ | $8658654068737$ | $63\times2^{37}+1$ | $5$ | | $12232066859009$ | $89\times2^{37}+1$ | $3$ | $17317308137473$ | $63\times2^{38}+1$ | $5$ | | $23364622090241$ | $85\times2^{38}+1$ | $3$ | $28862180229121$ | $105\times2^{38}+1$ | $19$ | | $29686813949953$ | $27\times2^{40}+1$ | $5$ | $39582418599937$ | $9\times2^{42}+1$ | $5$ | | $44530220924929$ | $81\times2^{39}+1$ | $7$ | $46179488366593$ | $21\times2^{41}+1$ | $11$ | | $50577534877697$ | $23\times2^{41}+1$ | $3$ | $55525337202689$ | $101\times2^{39}+1$ | $3$ | | $62672162783233$ | $57\times2^{40}+1$ | $5$ | $79164837199873$ | $9\times2^{43}+1$ | $5$ | | $96757023244289$ | $11\times2^{43}+1$ | $3$ | $106652627894273$ | $97\times2^{40}+1$ | $3$ | | $113249697660929$ | $103\times2^{40}+1$ | $3$ | $171523813933057$ | $39\times2^{42}+1$ | $5$ | | $215504279044097$ | $49\times2^{42}+1$ | $3$ | $217703302299649$ | $99\times2^{41}+1$ | $7$ | | $255086697644033$ | $29\times2^{43}+1$ | $3$ | $263882790666241$ | $15\times2^{44}+1$ | $7$ | | $321057395310593$ | $73\times2^{42}+1$ | $3$ | $409018325532673$ | $93\times2^{42}+1$ | $7$ | | $435406604599297$ | $99\times2^{42}+1$ | $10$ | $448600744132609$ | $51\times2^{43}+1$ | $11$ | | $474989023199233$ | $27\times2^{44}+1$ | $5$ | $505775348776961$ | $115\times2^{42}+1$ | $3$ | | $659706976665601$ | $75\times2^{43}+1$ | $11$ | $1108307720798209$ | $63\times2^{44}+1$ | $11$ | | $1178676464975873$ | $67\times2^{44}+1$ | $3$ | $1231453023109121$ | $35\times2^{45}+1$ | $3$ | | $1284229581242369$ | $73\times2^{44}+1$ | $3$ | $1337006139375617$ | $19\times2^{46}+1$ | $3$ | | $1636073302130689$ | $93\times2^{44}+1$ | $17$ | $1899956092796929$ | $27\times2^{46}+1$ | $7$ | | $1952732650930177$ | $111\times2^{44}+1$ | $5$ | $3553621580972033$ | $101\times2^{45}+1$ | $3$ | | $3799912185593857$ | $27\times2^{47}+1$ | $5$ | $4186940278571009$ | $119\times2^{45}+1$ | $3$ | | $4222124650659841$ | $15\times2^{48}+1$ | $19$ | $4925812092436481$ | $35\times2^{47}+1$ | $3$ | | $5559130790035457$ | $79\times2^{46}+1$ | $3$ | $7881299347898369$ | $7\times2^{50}+1$ | $6$ | | $9147936743096321$ | $65\times2^{47}+1$ | $3$ | $12947848928690177$ | $23\times2^{49}+1$ | $3$ | | $14214486323888129$ | $101\times2^{47}+1$ | $3$ | $15621861207441409$ | $111\times2^{47}+1$ | $11$ | | $16044073672507393$ | $57\times2^{48}+1$ | $5$ | $17169973579350017$ | $61\times2^{48}+1$ | $3$ | | $19703248369745921$ | $35\times2^{49}+1$ | $3$ | $22799473113563137$ | $81\times2^{48}+1$ | $5$ | | $30399297484750849$ | $27\times2^{50}+1$ | $11$ | $31525197391593473$ | $7\times2^{52}+1$ | $3$ | | $38280596832649217$ | $17\times2^{51}+1$ | $3$ | $59109745109237761$ | $105\times2^{49}+1$ | $17$ | | $77687093572141057$ | $69\times2^{50}+1$ | $5$ | $112589990684262401$ | $25\times2^{52}+1$ | $3$ | | $168884986026393601$ | $75\times2^{51}+1$ | $11$ | $180143985094819841$ | $5\times2^{55}+1$ | $6$ | | $418834765345456129$ | $93\times2^{52}+1$ | $7$ | $459367161991790593$ | $51\times2^{53}+1$ | $5$ | | $855683929200394241$ | $95\times2^{53}+1$ | $3$ | $882705526964617217$ | $49\times2^{54}+1$ | $5$ | | $891712726219358209$ | $99\times2^{53}+1$ | $7$ | $1261007895663738881$ | $35\times2^{55}+1$ | $6$ | | $1945555039024054273$ | $27\times2^{56}+1$ | $5$ | $2053641430080946177$ | $57\times2^{55}+1$ | $7$ | | $2485986994308513793$ | $69\times2^{55}+1$ | $5$ | $4179340454199820289$ | $29\times2^{57}+1$ | $3$ | | $6269010681299730433$ | $87\times2^{56}+1$ | $5$ | $10232178353385766913$ | $71\times2^{57}+1$ | $3$ | | $10808639105689190401$ | $75\times2^{57}+1$ | $7$ | $13690942867206307841$ | $95\times2^{57}+1$ | $3$ | | $15564440312192434177$ | $27\times2^{59}+1$ | $5$ | $28534807239019462657$ | $99\times2^{58}+1$ | $5$ | | $29687728743626309633$ | $103\times2^{58}+1$ | $3$ | $31417111000536580097$ | $109\times2^{58}+1$ | $3$ | | $35740566642812256257$ | $31\times2^{60}+1$ | $3$ | $40928713413543067649$ | $71\times2^{59}+1$ | $3$ | | $51881467707308113921$ | $45\times2^{60}+1$ | $11$ | $72634054790231359489$ | $63\times2^{60}+1$ | $34$ | | $84163269836299829249$ | $73\times2^{60}+1$ | $3$ | $86469112845513523201$ | $75\times2^{60}+1$ | $14$ | | $122209679488325779457$ | $53\times2^{61}+1$ | $3$ | $205220027820018761729$ | $89\times2^{61}+1$ | $3$ | | $219055085875300925441$ | $95\times2^{61}+1$ | $3$ | $242113515967437864961$ | $105\times2^{61}+1$ | $11$ | | $484227031934875729921$ | $105\times2^{62}+1$ | $17$ | $502673776008585281537$ | $109\times2^{62}+1$ | $3$ | 生成代码: import sympy.ntheory as nth import random if __name__ == '__main__': output = list() for mult in range(1, 120, 2): for exp in range(10, 63): num = mult << exp | 1 if nth.isprime(num): output.append((num, mult, exp, nth.residue_ntheory.primitive_root(num))) output.sort() print(len(output)) print('^ NTT 模数 ^ 表达式 ^ 原根 ^ NTT 模数 ^ 表达式 ^ 原根 ^') for i in range(0, len(output), 2): num, mult, exp, pr_root = output[i] string = f'| ${num}$ | ${mult}\\times{2}^{{{exp}}}+1$ | ${pr_root}$ ' if i + 1 < len(output): num, mult, exp, pr_root = output[i + 1] string += f'| ${num}$ | ${mult}\\times{2}^{{{exp}}}+1$ | ${pr_root}$ ' string += '|' print(string)