设 $f(a,b,c,n,t_{1},t_{2})=\sum_{i=0}^{n}i^{t_{1}}\lfloor\frac{ai+b}{c}\rfloor^{t_{2}}$,求解这一函数值的算法因类似于欧几里得算法而得名类欧几里得算法。为了方便,这里仅讨论 $6$ 个参数均为非负整数的情况。另外我们定义 $0^{0}=1$。现将该算法描述如下: 定义 $m=\lfloor\frac{an+b}{c}\rfloor$,$g_{t}(x)=(x+1)^{t}-x^{t}=\sum_{i=0}^{t-1}g_{ti}x^{i}$,$h_{t}(x)=\sum_{i=1}^{x}i^{t}=\sum_{i=0}^{t+1}h_{ti}x^{i}$。 首先描述几种特殊情况: * 若 $t_{2}=0$,那么有: $$ \begin{aligned} 原式&=\sum_{i=0}^{n}i^{t_{1}}\\ &=h_{t_{1}}(n)+[t_{1}=0] \end{aligned} $$ * 若 $m=0$,那么显然有: $$ 原式=0 $$ * 若 $a=0$,那么有: $$ \begin{aligned} 原式&=\sum_{i=0}^{n}i^{t_{1}}\lfloor\frac{b}{c}\rfloor^{t_{2}}\\ &=\lfloor\frac{b}{c}\rfloor^{t_{2}}(h_{t_{1}}(n)+[t_{1}=0]) \end{aligned} $$ * 若 $a\ge c$ 或 $b\ge c$,那么有: $$ \begin{aligned} 原式&=\sum_{i=0}^{n}i^{t_{1}}(\lfloor\frac{(a\%c)i+(b\%c)}{c}\rfloor+\lfloor\frac{a}{c}\rfloor i+\lfloor\frac{b}{c}\rfloor)^{t_{2}}\\ &=\sum_{i=0}^{n}i^{t_{1}}\sum_{u_{1}+u_{2}+u_{3}=t_{2}}{t_{2}\choose u_{1},u_{2},u_{3}}(\lfloor\frac{(a\%c)i+(b\%c)}{c}\rfloor)^{u_{1}}(\lfloor\frac{a}{c}\rfloor i)^{u_{2}}(\lfloor\frac{b}{c}\rfloor)^{u_{3}}\\ &=\sum_{u_{1}+u_{2}+u_{3}=t_{2}}{t_{2}\choose u_{1},u_{2},u_{3}}(\lfloor\frac{a}{c}\rfloor)^{u_{2}}(\lfloor\frac{b}{c}\rfloor)^{u_{3}}\sum_{i=0}^{n}i^{t_{1}+u_{2}}(\lfloor\frac{(a\%c)i+(b\%c)}{c}\rfloor)^{u_{1}}\\ &=\sum_{u_{1}+u_{2}+u_{3}=t_{2}}{t_{2}\choose u_{1},u_{2},u_{3}}(\lfloor\frac{a}{c}\rfloor)^{u_{2}}(\lfloor\frac{b}{c}\rfloor)^{u_{3}}f(a\%c,b\%c,c,n,t_{1}+u_{2},u_{1}) \end{aligned} $$ 接下来讨论一般的 $0\le a,b0\ge ai$,故 $cj+c-b\le ai$ 永远为假,因此: $$ \begin{aligned} 原式&=\sum_{j=0}^{m-1}g_{t_{2}}(j)\sum_{i=1}^{n}i^{t_{1}}[cj+c-b\le ai]\\ &=\sum_{j=0}^{m-1}g_{t_{2}}(j)\sum_{i=1}^{n}i^{t_{1}}[cj+c-b-1n$,那么: $$ \begin{aligned} mc-b-1&>na\\ na+b+1&