Warning: session_start(): open(/tmp/sess_1ccbb93259a77e52a15d2c02689e02f2, O_RDWR) failed: No space left on device (28) in /data/wiki/inc/init.php on line 239
Warning: session_start(): Failed to read session data: files (path: ) in /data/wiki/inc/init.php on line 239
Warning: Cannot modify header information - headers already sent by (output started at /data/wiki/inc/init.php:239) in /data/wiki/inc/auth.php on line 430
Warning: Cannot modify header information - headers already sent by (output started at /data/wiki/inc/init.php:239) in /data/wiki/inc/Action/Export.php on line 103
Warning: Cannot modify header information - headers already sent by (output started at /data/wiki/inc/init.php:239) in /data/wiki/inc/Action/Export.php on line 103
Warning: Cannot modify header information - headers already sent by (output started at /data/wiki/inc/init.php:239) in /data/wiki/inc/Action/Export.php on line 103
===== H. travel =====
==== 题意 ====
给定一棵点权树,从树上选三条不相交的路径,每条路径的权值定义为路径上的点权和,要求最大化三条路径权值和。
==== 题解 ====
设 $\text{dp}(u,0/1/2,i)$ 表示只考虑 $u$ 的子树,结点 $u$ 的状态为 $0/1/2$ 时,已经选中了 $i$ 条链此时的最大路径权值和。
我们需要维护一条正在生成的链,这条链不包含在已经选中的 $i$ 条链当中,如果 $u$ 状态为 $0$ 表示 $u$ 不在生成链中。
如果 $u$ 状态为 $1$ 表示 $u$ 在生成链中且 $u$ 只有一个儿子在生成链中, $u$ 状态为 $2$ 表示 $u$ 在生成链中且 $u$ 有两个儿子在生成链中。
考虑状态转移,利用生成链的合并,不难有
$$
\text{dp}(u,0,i+j)\gets \text{dp}(u,0,i)+\text{dp}(v,0,j)\\
\text{dp}(u,1,i+j)\gets \text{dp}(u,0,i)+\text{dp}(v,1,j)+a_u\\
\text{dp}(u,1,i+j)\gets \text{dp}(u,1,i)+\text{dp}(v,0,j)\\
\text{dp}(u,2,i+j)\gets \text{dp}(u,1,i)+\text{dp}(v,1,j)\\
\text{dp}(u,2,i+j)\gets \text{dp}(u,2,i)+\text{dp}(v,0,j)
$$
注意上式的 $\gets$ 表示取最大值,另外为了防止选中复数条从 $v$ 生成的链,需要开一个临时数组存储中间量。
初始状态为 $\text{dp}(u,1,0)=a_u$,最后转移完要考虑将正在生成的链转化为已经选中的链,于是有
$$
\text{dp}(u,0,i)\gets \max(\text{dp}(u,1,i-1),\text{dp}(u,2,i-1))
$$
最终答案为 $\text{dp}(1,0,3)$,时间复杂度 $O(nk^2)$,其中 $k$ 表示最多能选中的链的个数。
[[http://tokitsukaze.live/2018/07/24/2018niuke2.H/|参考资料]]
const int MAXN=4e5+5,MAXK=4;
struct Edge{
int to,next;
}edge[MAXN<<1];
int a[MAXN],head[MAXN],edge_cnt;
LL dp[MAXN][3][MAXK],tmp[3][MAXK];
void Insert(int u,int v){
edge[++edge_cnt]=Edge{v,head[u]};
head[u]=edge_cnt;
}
void Max(LL &a,LL b){
if(b>a)
a=b;
}
void dfs(int u,int fa){
dp[u][1][0]=a[u];
for(int i=head[u];i;i=edge[i].next){
int v=edge[i].to;
if(v==fa)continue;
dfs(v,u);
_for(i,0,3)_for(j,0,MAXK)
tmp[i][j]=dp[u][i][j];
_for(i,0,MAXK)_for(j,0,MAXK-i){
Max(tmp[0][i+j],dp[u][0][i]+dp[v][0][j]);
Max(tmp[1][i+j],dp[u][0][i]+dp[v][1][j]+a[u]);
Max(tmp[1][i+j],dp[u][1][i]+dp[v][0][j]);
Max(tmp[2][i+j],dp[u][1][i]+dp[v][1][j]);
Max(tmp[2][i+j],dp[u][2][i]+dp[v][0][j]);
}
_for(i,0,3)_for(j,0,MAXK)
dp[u][i][j]=tmp[i][j];
}
_for(i,1,MAXK)
Max(dp[u][0][i],max(dp[u][1][i-1],dp[u][2][i-1]));
}
int main()
{
int n=read_int();
_rep(i,1,n)
a[i]=read_int();
_for(i,1,n){
int u=read_int(),v=read_int();
Insert(u,v);
Insert(v,u);
}
dfs(1,0);
enter(dp[1][0][3]);
return 0;
}