**格式**:max 使用 \max,sum 使用 \text{sum},代码使用 '''' 隐藏,均已修改。学会使用 ''\begin{cases}\end{cases}'' 来表示不同的 case,不需要自己设计格式。
**内容**:内容过于简单!可尝试从读者的角度想想能否看懂。
- 动态转移方程 -> 状态转移方程
- $(1\le j k
\end{cases}
$$
答案为 $\text{ans}=\max\{dp[i]\}$。
但是时间复杂度为 $O(nk)$,显然会超时。
注意到 $\text{sum}[i]$ 可以直接提出,即 $dp[i]=\max\{dp[j]\}+\text{sum}[i]$,所以我们只需用一个单调队列来维护 $dp[i]$ 的最值,复杂度可以降低为 $O(n)$。
#include
#include
using namespace std;
int n,k;
long long e[100001];
long long dp[100001];
long long sum[100001];
int q[100001];
int front=0,tail=1;
long long a(int now)
{
return dp[now-1]-sum[now];
}
int main()
{
scanf("%d %d",&n,&k);
int rec=0;
for (int i=1;i<=n;i++)
{
scanf("%lld",&e[i]);
sum[i]=sum[i-1]+e[i];
}
for (int i=1;i<=n;i++)
{
while (front<=tail&&q[front]
==== 练习 ====
[[https://www.luogu.com.cn/problem/solution/P3957|洛谷p3957]]