====== 普通生成函数(OGF) ======
===== 算法简介 =====
形如 $F(x)=\sum_{n=0}^{\infty}a_nx^n$ 的函数, $a_n$ 可以提供关于这个序列的信息,一般用于解决无标号组合计数问题。
===== 算法例题 =====
==== 例题一 ====
[[https://www.luogu.com.cn/problem/P2000|洛谷p2000]]
=== 题意 ===
已知如下约束条件:
* $6\mid a$
* $b\le 9$
* $c\le 5$
* $4\mid d$
* $e\le 7$
* $2\mid f$
* $0\le g\le 1$
* $8\mid h$
* $10\mid i$
* $j\le 3$
* $a+b+c+d+e+f+g+h+i+j=n$
* 所有数非负整数
问满足以上约束的所有情况数。
=== 题解 ===
根据上述条件,可以得到如下生成函数:
* $1+x^6+x^{12}+\cdots=\frac 1{1-x^6}$
* $1+x+x^2+\cdots +x^9=\frac {1-x^{10}}{1-x}$
* $1+x+x^2+\cdots +x^5=\frac {1-x^6}{1-x}$
* $1+x^4+x^8+\cdots=\frac 1{1-x^4}$
* $1+x+x^2+\cdots +x^7=\frac {1-x^8}{1-x}$
* $1+x^2+x^4+\cdots=\frac 1{1-x^2}$
* $1+x=\frac {1-x^2}{1-x}$
* $1+x^8+x^{16}+\cdots=\frac 1{1-x^8}$
* $1+x^{10}+x^{20}+\cdots=\frac 1{1-x^{10}}$
* $1+x+x^2+x^3=\frac {1-x^4}{1-x}$
全部相乘得到 $\frac 1{(1-x)^5}=\sum_{n=0}^{\infty} {n+4 \choose n}x^n=\sum_{n=0}^{\infty} {n+4 \choose 4}x^n$。
于是答案为 ${n+4 \choose 4}$。
==== 例题二 ====
=== 题意 ===
已知卡特兰数定义
$$c_n=\begin{cases}
1, & n=0\\
\sum_{i=0}^{n-1}c_ic_{n-i-1}, & n\gt 0
\end{cases}$$
求 $c_n$ 通项公式。
=== 题解 ===
$$
\begin{equation}\begin{split}
F(x)&=\sum_{n=0}^{\infty}c_nx^n\\
&=1+\sum_{n=1}^{\infty}c_nx^n\\
&=1+\sum_{n=1}^{\infty}\sum_{i=0}^{n-1}c_ic_{n-i-1}x^n\\
&=1+x\sum_{n=0}^{\infty}\sum_{i=0}^{n-1}c_ic_{n-i}x^n\\
&=1+xF^2(x)
\end{split}\end{equation}
$$
解得 $F(x)=\frac {1\pm\sqrt{1-4x}}{2x}$,又有 $F(0)=c_0=1$,于是发现只有 $F(x)=\frac {1-\sqrt{1-4x}}{2x}$ 一种可能。
$$
\begin{equation}\begin{split}
\sqrt{1-4x}&=\sum_{n=0}^{\infty}{\frac 12 \choose n}(-4x)^n\\
&=1+\sum_{n=1}^{\infty}\frac{(-1)^{n-1}(2n-3)!!}{2^nn!}(-4x)^n\\
&=1+\sum_{n=1}^{\infty}\frac{(-1)^{n-1}(2n-2)!}{2^n(2n-2)!!n!}(-4x)^n\\
&=1+\sum_{n=1}^{\infty}\frac{(-1)^{n-1}(2n-2)!}{2^{2n-1}(n-1)!n!}(-4x)^n\\
&=1-2\sum_{n=1}^{\infty}\frac{(2n-2)!}{(n-1)!n!}x^n\\
&=1-2x\sum_{n=0}^{\infty}\frac{(2n)!}{n!(n+1)!}x^n\\
\end{split}\end{equation}
$$
所以有
$$
\begin{equation}\begin{split}
F(x)&=\frac {1-\sqrt{1-4x}}{2x}\\
&=\frac {1-\left(1-2x\sum_{n=0}^{\infty}\frac{(2n)!}{n!(n+1)!}x^n\right)}{2x}\\
&=\sum_{n=0}^{\infty}\frac{(2n)!}{n!(n+1)!}x^n
\end{split}\end{equation}
$$
于是有 $c_n=\frac{(2n)!}{n!(n+1)!}=\frac{2n \choose n}{n+1}$。
==== 例题三 ====
=== 题意 ===
求满足下列条件的序列数:
- $a_1+a_2+\cdots +a_k=n$
- $a_1\ge a_2\ge\cdots \ge a_k\ge 1$
=== 题解 ===
先考虑 $a_1\le t$ 的情况。
只选择 $1$ 的方案的生成函数为 $1+x+x^2+\cdots=\frac 1{1-x}$。
只选择 $2$ 的方案的生成函数为 $1+x^2+x^4+\cdots=\frac 1{1-x^2}$。
以此类推,只选择 $t$ 的方案的生成函数为 $1+x^t+x^{2t}+\cdots=\frac 1{1-x^t}$。
于是 $a_1\le t$ 的生成函数为 $P_t(x)=\prod_{i=1}^t \frac 1{1-x^i}$,$a_1$ 无限制时生成函数为 $P(x)=\prod_{i=1}^{\infty} \frac 1{1-x^i}$。
答案即为 $[x^n]P(x)$,接下来考虑如何展开 $P(x)$。
这里给出**五边形数定理**和[[https://blog.csdn.net/visit_world/article/details/52734860|证明]]。
$$\prod_{i=1}^{\infty}\left(1-x^i\right)=1+\sum_{k=1}^{\infty} (-1)^kx^{k(3k\pm 1)/2}=1-x-x^2+x^5+x^7-x^{12}-x^{15}+\cdots$$
于是有 $P(x)\prod_{i=1}^{\infty}\left(1-x^i\right)=1$,展开
$$
\begin{matrix}
P(x) & p_0 & p_1x & p_2x^2 & p_3x^3 & p_4x^4 & p_5x^5 &\cdots \\
-xP(x)& & -p_0x & -p_1x^2 & -p_2x^3 & -p_3x^4 & -p_4x^5 &\cdots \\
-x^2P(x)& & & -p_0x^2 & -p_1x^3 & -p_2x^4 & -p_3x^5 &\cdots \\
x^5P(x)& & & & & & p_0x^5 &\cdots \\
\cdots \\
\prod_{i=1}^{\infty}\left(1-x^i\right)P(x) & 1 & 0x & 0x^2 & 0x^3 & 0x^4 & 0x^5 &\cdots
\end{matrix}
$$
于是 $p_n=[n==0]+p_{n-1}+p_{n-2}-p_{n-5}-p_{n-7}+\cdots$。
==== 例题四 ====
[[https://www.luogu.com.cn/problem/P4389|洛谷p4389]]
=== 题意 ===
给定 $n$ 种物品,每种物品体积为 $v_i$,有无限个。问物品恰好装满体积为 $i(1\le i\le m)$ 的背包的方案数。
=== 题解 ===
首先只选每个物品 $i$ 的生成函数为 $1+x^{v_i}+x^{2v_i}+\cdots=\cfrac 1{1-x^{v_i}}$。
于是最终方案的生成函数为 $F(x)=\prod_{i=1}^n \cfrac 1{1-x^{v_i}}=\prod_{i=1}^n \sum_{j=1}^{\infty}\cfrac {x^{jv_i}}j$。
记体积为 $i$ 的物品有 $c_i$ 个,同时考虑取 $\ln$ 加速乘法,有 $F(x)=\exp \ln F(x)=\exp (\sum_{i=1}^n \sum_{j=1}^{\infty}\cfrac {x^{jv_i}}j)=\exp (\sum_{i=1}^n \sum_{j=1}^{\infty}\cfrac {x^{ij}}j)$。
由于只需要计算 $[x^i]F(x)(1\le i\le m)$,于是只需要计算出 $[x^i](\sum_{i=1}^n \sum_{j=1}^{\infty}\cfrac {x^{ij}}j)(0\le i\le m)$ 即可。
时间复杂度 $O(m\log m)$。
const int MAXN=1e5+5,Mod=998244353;
int quick_pow(int a,int b){
int ans=1;
while(b){
if(b&1)
ans=1LL*ans*a%Mod;
a=1LL*a*a%Mod;
b>>=1;
}
return ans;
}
namespace Poly{
const int G=3;
int rev[MAXN<<2],Wn[30][2];
void init(){
int m=Mod-1,lg2=0;
while(m%2==0)m>>=1,lg2++;
Wn[lg2][1]=quick_pow(G,m);
Wn[lg2][0]=quick_pow(Wn[lg2][1],Mod-2);
while(lg2){
m<<=1,lg2--;
Wn[lg2][0]=1LL*Wn[lg2+1][0]*Wn[lg2+1][0]%Mod;
Wn[lg2][1]=1LL*Wn[lg2+1][1]*Wn[lg2+1][1]%Mod;
}
}
int build(int k){
int n,pos=0;
while((1<>1]>>1)|((i&1)<<(pos-1));
return n;
}
void NTT(int *f,int n,bool type){
_for(i,0,n)if(i>1);
int n=build((_n-1)<<1);
_for(i,(_n+1)>>1,n)g[i]=0;
_for(i,0,_n)temp[i]=f[i];_for(i,_n,n)temp[i]=0;
NTT(g,n,true);NTT(temp,n,true);
_for(i,0,n)g[i]=(2-1LL*temp[i]*g[i]%Mod)*g[i]%Mod;
NTT(g,n,false);
_for(i,_n,n)g[i]=0;
}
void Ln(const int *f,int *g,int _n){
static int temp[MAXN<<2];
Inv(f,g,_n);
_for(i,1,_n)temp[i-1]=1LL*f[i]*i%Mod;
temp[_n-1]=0;
Mul(g,_n,temp,_n-1,_n);
for(int i=_n-1;i;i--)g[i]=1LL*g[i-1]*quick_pow(i,Mod-2)%Mod;
g[0]=0;
}
void Exp(const int *f,int *g,int _n){
static int temp[MAXN<<2];
if(_n==1)return g[0]=1,void();
Exp(f,g,(_n+1)>>1);
_for(i,(_n+1)>>1,_n)g[i]=0;
Ln(g,temp,_n);
temp[0]=(1+f[0]-temp[0])%Mod;
_for(i,1,_n)temp[i]=(f[i]-temp[i])%Mod;
Mul(g,(_n+1)>>1,temp,_n,_n);
}
}
int a[MAXN<<2],b[MAXN<<2],c[MAXN],inv[MAXN];
void get_inv(){
inv[1]=1;
_for(i,2,MAXN)
inv[i]=1LL*(Mod-Mod/i)*inv[Mod%i]%Mod;
}
int main()
{
Poly::init();
get_inv();
int n=read_int(),m=read_int();
_for(i,0,n)c[read_int()]++;
_rep(i,1,m){
for(int j=1;i*j<=m;j++)
a[i*j]=(a[i*j]+1LL*c[i]*inv[j])%Mod;
}
Poly::Exp(a,b,m+1);
_rep(i,1,m)enter(b[i]);
return 0;
}
==== 例题五 ====
[[https://www.luogu.com.cn/problem/P4451|洛谷p4451]]
=== 题意 ===
求 $\sum\prod_{i=1}^mF_{a_i}$,其中
- $m\gt 0$
- $a_i\gt 0$
- $sum_{i=1}^m a_i=n$
- $F$ 为斐波那契数列,且 $F_0=0,F_1=1$
答案对 $10^9+7$ 取模。
=== 题解 ===
先考虑 $m=1$ 的生成函数,有 $G(x)=\sum_{i=0}^n F_ix^i$。
于是答案的生成函数为 $H(x)=\sum_{m=1}^{\infty} G^m(x)=\cfrac {G(x)}{1-G(x)}$,接下来考虑求解 $G(x)$。
有 $G(x)-xG(x)-x^2G(x)=F_0+F_1x-F_0=x$,于是 $G(x)=\cfrac x{1+x+x^2}$,代入可得 $H(x)=\cfrac {x}{1-2x-x^2}$。
于是有 $(1-2x-x^2)H(x)=x$,于是 $h_n=2h_{n-1}+h_{n-2}+[n==1]$。
通过特征根求解得 $h_n=\cfrac {\sqrt 2}4(1+\sqrt 2)^n-\cfrac {\sqrt 2}4(1-\sqrt 2)^n$。
const int MAXL=1e4+5,Mod=1e9+7,sqrt2=59713600,inv4=250000002;
int quick_pow(int a,int b){
int ans=1;
while(b){
if(b&1)ans=1LL*ans*a%Mod;
a=1LL*a*a%Mod;
b>>=1;
}
return ans;
}
char buf[MAXL];
int main()
{
scanf("%s",buf);
int n=0,len=strlen(buf);
_for(i,0,len)
n=(10LL*n+buf[i]-'0')%(Mod-1);
int ans=1LL*(quick_pow(1+sqrt2,n)-quick_pow(1-sqrt2,n))*sqrt2%Mod*inv4%Mod;
enter((ans+Mod)%Mod);
return 0;
}
==== 例题六 ====
[[https://ac.nowcoder.com/acm/contest/5670/C|牛客暑期多校(第五场) C 题]]
=== 题意 ===
已知 $\sum_{i=1}^k a_i=n,\sum_{i=1}^k b_i=m,P=\prod_{i=1}^k \min(a_i,b_i)$,求 $\sum_{a,b}P$。
=== 题解 ===
令 $F(x)=\sum_{i=1,j=1}^{\infty} \min(a_i,b_i)x^iy^j$,于是答案为 $[x^ny^m]F^k(x)$。
考虑求出 $F(x)$ 的封闭式。
$$
\begin{equation}\begin{split}
F(x)&=xy &+xy^2 &+xy^3 &+xy^4+\cdots \\
&+x^2y &+2x^2y^2 &+2x^2y^3 &+2x^2y^4+\cdots \\
&+x^3y &+2x^3y^2 &+3x^3y^3 &+3x^3y^4+\cdots
\end{split}\end{equation}
$$
先想办法将系数化为 $1$,考虑相邻行之间错位相减,有
$$
\begin{equation}\begin{split}
(1-x)F(x)&=xy &+xy^2 &+xy^3 &+xy^4+\cdots \\
& &+x^2y^2 &+x^2y^3 &+x^2y^4+\cdots \\
& & &+x^3y^3 &+x^3y^4+\cdots
\end{split}\end{equation}
$$
然后发现每行均成为等比数列,直接求和得
$$(1-x)F(x)=\frac {xy}{1-y}+\frac{x^2y^2}{1-y}+\frac{x^3y^3}{1-y}+\cdots $$
发现结果仍然为等比数列,继续求和得
$$(1-x)F(x)=\frac {xy}{(1-y)(1-xy)}$$
于是有
$$
\begin{equation}\begin{split}
F^k(x)&=\frac {x^ky^k}{(1-x)^k(1-y)^k(1-xy)^k} \\
&=x^ky^k\sum_{a=0,b=0,c=0}^{\infty} {k+a-1 \choose a}x^a{k+b-1 \choose b}y^b{k+c-1 \choose c}x^cy^c
\end{split}\end{equation}
$$
考虑枚举 $c$ 的同时计算出 $a,b$ 即可,于是 $[x^ny^m]F^k(x)=\sum_{i=0}^{\min(n,m)-k}{n-i-1 \choose n-k-i}{m-i-1 \choose m-k-i}{k+i-1 \choose i}$
预处理阶乘和阶乘的逆即可,时间复杂度 $O(n)$。
const int MAXN=1e6+5,Mod=998244353;
int frac[MAXN],invfrac[MAXN];
int quick_pow(int a,int b){
int ans=1;
while(b){
if(b&1)
ans=1LL*ans*a%Mod;
a=1LL*a*a%Mod;
b>>=1;
}
return ans;
}
int C(int n,int m){return 1LL*frac[n]*invfrac[n-m]%Mod*invfrac[m]%Mod;}
int main()
{
frac[0]=1;
_for(i,1,MAXN)frac[i]=1LL*frac[i-1]*i%Mod;
invfrac[MAXN-1]=quick_pow(frac[MAXN-1],Mod-2);
for(int i=MAXN-1;i;i--)
invfrac[i-1]=1LL*invfrac[i]*i%Mod;
int T=read_int();
while(T--){
int n=read_int(),m=read_int(),k=read_int();
int K=min(n,m)-k,ans=0;
_rep(i,0,K)
ans=(ans+1LL*C(n-i-1,n-k-i)*C(m-i-1,m-k-i)%Mod*C(k+i-1,i))%Mod;
enter(ans);
}
return 0;
}
==== 例题七 ====
[[https://www.luogu.com.cn/problem/CF923E|CF923E]]
=== 题意 ===
给定一个数 $x\in [0,n]$,其中 $x=i$ 的概率为 $p_i$。每次操作将 $x$ 等概率变成 $[0,x]$ 中的某个数。问 $m$ 轮操作后 $x=i$ 的概率。
=== 题解 ===
设 $f_{k,i}$ 表示 $k$ 轮操作后 $x=k$ 的概率,显然有 $f_{0,i}=p_i$,并可以得到递推式
$$f_{k,i}=\sum_{j=i}^{n} \frac {f_{k-1,j}}{j+1}$$
考虑构造生成函数优化递推过程
$$
\begin{equation}\begin{split}
F_k(x)&=\sum_{i=0}^n f_{k,i}x^i\\
&=\sum_{i=0}^n \sum_{j=i}^{n} \frac {f_{k-1,j}}{j+1}x^i\\
&=\sum_{j=0}^n \frac {f_{k-1,j}}{j+1}\sum_{i=0}^j x^i\\
&=\frac 1{x-1}\sum_{j=0}^n f_{k-1,j}\frac {x^{j+1}-1}{j+1}\\
&=\frac 1{x-1}\sum_{j=0}^n f_{k-1,j}\int_1^x t^j \mathrm{d}t\\
&=\frac 1{x-1}\int_1^x F_{k-1}(t)\mathrm{d}t
\end{split}\end{equation}
$$
由于 $\frac 1{x-1}$ 和 $\int_1^x$ 不利于更进一步处理,于是考虑构造辅助函数 $G_k(x)=F_k(x+1)$
$$
\begin{equation}\begin{split}
G_k(x)&=\frac 1x\int_1^{x+1} F_{k-1}(t)\mathrm{d}t\\
&=\frac 1x\int_0^{x} F_{k-1}(t+1)\mathrm{d}t\\
&=\frac 1x\int_0^{x} G_{k-1}(t)\mathrm{d}t\\
&=\sum_{i=0}^n \frac {g_{k-1,i}}{i+1}x^i
\end{split}\end{equation}
$$
于是有 $g_{k,i}=\frac {g_{k-1,i}}{i+1}$,所以 $g_{m,i}=\frac {g_{0,i}}{(i+1)^m}$。
接下来考虑 $g_{k,i}$ 与 $f_{k,i}$ 之间的转化,简记 $g_i=g_{k,i},f_i=f_{k,i}$,于是有
$$g_i=\sum_{j=i}^n {j\choose i}f_j=\sum_{j=i}^n \frac{j!}{i!(j-i)!}f_j=\frac 1{i!}\sum_{j=0}^{n-i}\frac {(i+j)!f_{i+j}}{j!}$$
记 $a_i=\frac 1{i!},b_i=(n-i)!f_{n-i}$,于是有 $g_i=\sum_{j=0}^{n-i}a_ib_{n-i-j}$。
直接 $\text{NTT}$ 可以由 $F_0(x)$ 求出 $G_0(x)$ 进而求出 $G_m(x)$。考虑对 $\sum_{i=0}^n \frac 1{i!}x^i$ 求逆再与 $G_m(x)$ 卷积即可求出 $F_m(x)$,总时间复杂度 $O(n\log n)$。
const int MAXN=1e5+5,Mod=998244353;
int quick_pow(int a,int b){
int ans=1;
while(b){
if(b&1)
ans=1LL*ans*a%Mod;
a=1LL*a*a%Mod;
b>>=1;
}
return ans;
}
namespace Poly{
const int G=3;
int rev[MAXN<<2],Wn[30][2];
void init(){
int m=Mod-1,lg2=0;
while(m%2==0)m>>=1,lg2++;
Wn[lg2][1]=quick_pow(G,m);
Wn[lg2][0]=quick_pow(Wn[lg2][1],Mod-2);
while(lg2){
m<<=1,lg2--;
Wn[lg2][0]=1LL*Wn[lg2+1][0]*Wn[lg2+1][0]%Mod;
Wn[lg2][1]=1LL*Wn[lg2+1][1]*Wn[lg2+1][1]%Mod;
}
}
int build(int k){
int n,pos=0;
while((1<>1]>>1)|((i&1)<<(pos-1));
return n;
}
void NTT(int *f,int n,bool type){
_for(i,0,n)if(i>1);
int n=build((_n-1)<<1);
_for(i,(_n+1)>>1,n)g[i]=0;
_for(i,0,_n)temp[i]=f[i];_for(i,_n,n)temp[i]=0;
NTT(g,n,true);NTT(temp,n,true);
_for(i,0,n)g[i]=(2-1LL*temp[i]*g[i]%Mod)*g[i]%Mod;
NTT(g,n,false);
_for(i,_n,n)g[i]=0;
}
}
int a[MAXN<<2],b[MAXN<<2],c[MAXN<<2],frac[MAXN],invfrac[MAXN];
int main()
{
Poly::init();
frac[0]=1;
_for(i,1,MAXN)frac[i]=1LL*frac[i-1]*i%Mod;
invfrac[MAXN-1]=quick_pow(frac[MAXN-1],Mod-2);
for(int i=MAXN-1;i;i--)invfrac[i-1]=1LL*invfrac[i]*i%Mod;
int n=read_int(),m=read_LL()%(Mod-1)*(Mod-2)%(Mod-1);
_rep(i,0,n)
a[n-i]=1LL*read_int()*frac[i]%Mod;
_rep(i,0,n)
b[i]=invfrac[i];
Poly::Mul(a,n+1,b,n+1);
_rep(i,0,n)
a[i]=1LL*a[i]*quick_pow(n-i+1,m)%Mod,b[i]=invfrac[i];
Poly::Inv(b,c,n+1);
Poly::Mul(a,n+1,c,n+1);
_rep(i,0,n)a[i]=1LL*a[i]*invfrac[n-i]%Mod;
reverse(a,a+n+1);
_rep(i,0,n)space(a[i]);
return 0;
}