Warning: session_start(): open(/tmp/sess_fb171e9a3205cdd1674085abc017e40f, O_RDWR) failed: No space left on device (28) in /data/wiki/inc/init.php on line 239
Warning: session_start(): Failed to read session data: files (path: ) in /data/wiki/inc/init.php on line 239
Warning: Cannot modify header information - headers already sent by (output started at /data/wiki/inc/init.php:239) in /data/wiki/inc/auth.php on line 430
Warning: Cannot modify header information - headers already sent by (output started at /data/wiki/inc/init.php:239) in /data/wiki/inc/Action/Export.php on line 103
Warning: Cannot modify header information - headers already sent by (output started at /data/wiki/inc/init.php:239) in /data/wiki/inc/Action/Export.php on line 103
Warning: Cannot modify header information - headers already sent by (output started at /data/wiki/inc/init.php:239) in /data/wiki/inc/Action/Export.php on line 103
====== 2020/05/02 -- 2020/05/08 周报 ======
===== 本周推荐 =====
==== airbust ====
CF 1342D Mulitple Cases
先求出一共要多少个case,假设大于等于$i$的$m_i$个数是$b_i$,根据抽屉原理,case的个数要大于等于$\lceil \frac {b_i}{c_i} \rceil$,所以一共需要$ans=max(\lceil \frac {b_i}{c_i} \rceil)$个case。然后是构造方案,将$m_i$从小到大排序,每个$m_i$放入第$(i\ mod\ ans)$个case即可。
==== kazamori ====
CF 1348E Phoenix and Berries
* 分类:DP
* 简要题意: 有$n$棵树,每棵树上有$a_i$个红果实和$b_i$个蓝果实。有可以装$k$个果实的篮子,一个篮子只能放同种颜色或同一棵树上的果实。求最多可以放满多少个篮子?
* 解法: 最多只有$n$个篮子内的果实是不同色的(若同一棵树上装了多个不同色的篮子 ,则可以转化为多个同色的篮子加上一个不同色的篮子 ),枚举第$i$棵树生成的不同色的篮子的组成,dp求解。''%%dp[i][j]%%''表示前$i$棵树装完后,剩下$j$颗红果实时,最多能填满的篮子的数量。
==== Ket98 ====
CF 1344A Hilbert’s Hotel
这道题很简单,直接在$0\leq i