====== Educational Codeforces Round 93 (Rated for Div. 2)======
===== A. Bad Triangle=====
**题意:**判断一组排序后的数中是否有三个数可以构成三角形三边,并输出三个数
**思路:**等价于判断最大的数是否可以和最小的两个数构成三角形三边
#include
using namespace std;
typedef long long LL;
int a[100000];
int main(){
int t = 0;
cin>>t;
while(t--){
int n;
scanf("%d", &n);
for (int i = 1; i <= n; ++i) {
scanf("%d", a+i);
}
if(a[1] + a[2] <= a[n])printf("1 2 %d\n", n);
else printf("-1\n");
}
}
===== B. Substring Removal Game=====
#include
using namespace std;
typedef long long LL;
int num[1005], tot;
int main() {
int t;
cin >> t;
while (t--) {
string s;
cin >> s;
tot = 0;
int tt = 0;
int n = s.length();
for (int i = 0; i < n; i++) {
if (s[i] == '1') {
tt++;
continue;
}
if (tt != 0) {
num[tot] = tt;
tot++;
tt = 0;
}
}
if (tt != 0) {
num[tot] = tt;
tot++;
}
sort(num, num + tot);
int ans = 0;
for (int i = tot - 1; i >= 0; i -= 2) {
ans += num[i];
}
printf("%d\n", ans);
}
return 0;
}
===== C. Bad Triangle=====
**题意:**求子串内字符值和与子串下标差相等的子串个数
**思路:**求前缀和后,减去当前下标,符合要求的子串的首位下表对应的值相等
#include
using namespace std;
typedef long long LL;
int a[100005];
int sum[100005];
int cnt[2000005];
int main() {
int t = 0;
cin >> t;
while (t--) {
int n;
cin >> n;
string s;
cin >> s;
for (int i = 0; i < n; ++i) {
a[i] = s[i] - '0';
}
sum[0] = a[0];
for (int j = 1; j < n; ++j) {
sum[j] = sum[j - 1] + a[j];
}
for (int i = 0; i < n; ++i) {
sum[i] -= i + 1;
}
memset(cnt, 0, sizeof(int) * n * 10 * 2 + 2);
cnt[0 + n * 10] = 1;
LL ans = 0;
for (int i = 0; i < n; ++i) {
if(cnt[sum[i] + n * 10]){
ans += cnt[sum[i] + n * 10];
}
cnt[sum[i] + n * 10]++;
}
cout<
===== D. Colored Rectangles=====
**思路:**dp,dp[i][j][k]表示r用前i个、g用前j个,b用前k个组成的长方形面积最大值,考虑r、g长方形增设的情况,可由i-1 j-1 k的结果加上剩下r、g边最大值相乘得到。
#include
using namespace std;
typedef long long ll;
const int maxn = 220;
int r[maxn], g[maxn], b[maxn];
ll dp[maxn][maxn][maxn];
int main() {
int R, G, B;
scanf("%d%d%d", &R, &G, &B);
for (int i = 0; i < R; i++) scanf("%d", &r[i]);
for (int i = 0; i < G; i++) scanf("%d", &g[i]);
for (int i = 0; i < B; i++) scanf("%d", &b[i]);
sort(r, r + R, greater());
sort(g, g + G, greater());
sort(b, b + B, greater());
ll ans = -1;
for (int i = 0; i <= R; i++)
for (int j = 0; j <= G; j++)
for (int k = 0; k <= B; k++) {
dp[i + 1][j + 1][k] = max(dp[i + 1][j + 1][k], dp[i][j][k] + 1ll * r[i] * g[j]);
dp[i + 1][j][k + 1] = max(dp[i + 1][j][k + 1], dp[i][j][k] + 1ll * r[i] * b[k]);
dp[i][j + 1][k + 1] = max(dp[i][j + 1][k + 1], dp[i][j][k] + 1ll * g[j] * b[k]);
ans = max({ans, dp[i + 1][j + 1][k], dp[i + 1][j][k + 1], dp[i][j + 1][k + 1]});
}
printf("%lld\n", ans);
return 0;
}