题意:设十元组$(s_1,s_2,n_1,n_2,u_1,u_2,k_1,k_2,e_1,e_2)$满足下列条件,$0 \leq s_1 < s_2,0 \leq n_1 < n_2,0 \leq u_1 < u_2,0 \leq k_1 < k_2,0 \leq e_1 < e_2,$$s_1 + s_2 + n_1 + n_2 + u_1 + u_2 + k_1 + k_2 + e_1 + e_2 \leq N$,求所有满足条件的十元组的$(s_2 − s_1)(n_2 − n_1)(u_2 − u_1)(k_2 - k_1)(e_2 - e_1)$的和,对$10^{9} +7$取模。$(1 \leq N \leq 10^{9})$