给定一棵点权树,从树上选三条不相交的路径,每条路径的权值定义为路径上的点权和,要求最大化三条路径权值和。
设 $\text{dp}(u,0/1/2,i)$ 表示只考虑 $u$ 的子树,结点 $u$ 的状态为 $0/1/2$ 时,已经选中了 $i$ 条链此时的最大路径权值和。
我们需要维护一条正在生成的链,这条链不包含在已经选中的 $i$ 条链当中,如果 $u$ 状态为 $0$ 表示 $u$ 不在生成链中。
如果 $u$ 状态为 $1$ 表示 $u$ 在生成链中且 $u$ 只有一个儿子在生成链中, $u$ 状态为 $2$ 表示 $u$ 在生成链中且 $u$ 有两个儿子在生成链中。
考虑状态转移,利用生成链的合并,不难有
$$ \text{dp}(u,0,i+j)\gets \text{dp}(u,0,i)+\text{dp}(v,0,j)\\ \text{dp}(u,1,i+j)\gets \text{dp}(u,0,i)+\text{dp}(v,1,j)+a_u\\ \text{dp}(u,1,i+j)\gets \text{dp}(u,1,i)+\text{dp}(v,0,j)\\ \text{dp}(u,2,i+j)\gets \text{dp}(u,1,i)+\text{dp}(v,1,j)\\ \text{dp}(u,2,i+j)\gets \text{dp}(u,2,i)+\text{dp}(v,0,j) $$
注意上式的 $\gets$ 表示取最大值,另外为了防止选中复数条从 $v$ 生成的链,需要开一个临时数组存储中间量。
初始状态为 $\text{dp}(u,1,0)=a_u$,最后转移完要考虑将正在生成的链转化为已经选中的链,于是有
$$ \text{dp}(u,0,i)\gets \max(\text{dp}(u,1,i-1),\text{dp}(u,2,i-1)) $$
最终答案为 $\text{dp}(1,0,3)$,时间复杂度 $O(nk^2)$,其中 $k$ 表示最多能选中的链的个数。