目录

数论 3

杜教筛

算法简介

一种 $O\left(n^{\frac 23}\right)$ 计算积性函数前缀和的算法。

算法思路

设 $f$、$g$ 为积性函数,$S(n)=\sum_{i=1}^n f(i)$,考虑 $f$、$g$ 的狄利克雷卷积的前缀和

\begin{equation}\sum_{i=1}^n (f\ast g)(i)=\sum_{i=1}^n\sum_{d\mid i}f(\frac id)g(d)=\sum_{d=1}^n \left(g(d)\sum_{k=1}^{\lfloor\frac nd\rfloor}f(k)\right)=\sum_{d=1}^n g(d)S(\lfloor\frac nd\rfloor)\end{equation}

所以有

\begin{equation}\sum_{i=1}^n (f\ast g)(i)=g(1)S(n)+\sum_{d=2}^n g(d)S(\lfloor\frac nd\rfloor)\end{equation}

移项得

\begin{equation}g(1)S(n)=\sum_{i=1}^n (f\ast g)(i)-\sum_{d=2}^n g(d)S(\lfloor\frac nd\rfloor)\end{equation}

观察式子,发现如果能快速求出 $(f\ast g)(n)$ 和 $g(n)$ 的前缀和,就可以通过整数分块和记忆化搜索快速求出 $S(n)$。

复杂度证明

下面假设 $(f\ast g)(n)$ 和 $g(n)$ 的前缀和可以 $O(1)$ 求出。

若要求出 $S(n)$,需要先求出 $S(\lfloor\frac nd\rfloor)(d=2\sim n)$。

事实上,有 $\{x|\exists d\left((2\le d\le n)\land \left(\lfloor\frac nd\rfloor=x\right)\right)\}\subseteq \{1,2,3\cdots \lfloor\sqrt n\rfloor\}\cup\{\lfloor\frac n2\rfloor,\lfloor\frac n3\rfloor,\lfloor\frac n4\rfloor\cdots \lfloor\frac n{\lfloor\sqrt n\rfloor}\rfloor\}$。

对 $m\in \{x|\exists d\left((2\le d\le n)\land \left(\lfloor\frac nd\rfloor=x\right)\right)\}$,有 \begin{equation}\{1,2,3\cdots \lfloor\sqrt m\rfloor\}\cup\{\lfloor\frac m2\rfloor,\lfloor\frac m3\rfloor,\lfloor\frac m4\rfloor\cdots \lfloor\frac m{\lfloor\sqrt m\rfloor}\rfloor\} \subset\{1,2,3\cdots \lfloor\sqrt n\rfloor\}\cup\{\lfloor\frac n2\rfloor,\lfloor\frac n3\rfloor,\lfloor\frac n4\rfloor\cdots \lfloor\frac n{\lfloor\sqrt n\rfloor}\rfloor\}\end{equation}

因为首先 $m\lt n$,于是

\begin{equation}\{1,2,3\cdots \lfloor\sqrt m\rfloor\}\subset\{1,2,3\cdots \lfloor\sqrt n\rfloor\}\end{equation}

设 $m=\lfloor\frac nd\rfloor$,有

\begin{equation}\{\lfloor\frac n{2d}\rfloor,\lfloor\frac n{3d}\rfloor,\lfloor\frac n{4d}\rfloor\cdots \lfloor\frac n{\lfloor\sqrt m\rfloor d}\rfloor\} \subset \{\lfloor\frac n2\rfloor,\lfloor\frac n3\rfloor,\lfloor\frac n4\rfloor\cdots \lfloor\frac n{\lfloor\sqrt n\rfloor}\rfloor\}\end{equation}

所以记忆化搜索只需要求出最开始的 $O(\sqrt n)$ 个状态,即 $\{1,2,3\cdots \lfloor\sqrt n\rfloor\}\cup\{\lfloor\frac n2\rfloor,\lfloor\frac n3\rfloor,\lfloor\frac n4\rfloor\cdots \lfloor\frac n{\lfloor\sqrt n\rfloor}\rfloor\}$

根据整数分块,每个状态统计答案的时间复杂度为 $O(\sqrt n)$,总时间复杂度为

\begin{equation}\sum_{i=1}^{\lfloor\sqrt n\rfloor}\left(O(\sqrt i)+O\left(\sqrt {\frac ni}\right)\right)=O\left(\int_{x=1}^{\sqrt n}\sqrt x+\sqrt {\frac nx}\mathrm{d}x\right)=O\left(n^{\frac 34}\right)\end{equation}

考虑线性筛预处理前 $k$ 个前缀和 $(k\ge \sqrt n)$。

总时间复杂度变为

\begin{equation}O(k)+\sum_{i=1}^{\lfloor\sqrt {\frac nk}\rfloor}O\left(\sqrt {\frac ni}\right)=O(k)+O\left(\int_{x=1}^{\sqrt {\frac nk}}\sqrt {\frac nx}\mathrm{d}x\right)=O(k)+O\left(\frac n{\sqrt k}\right)\end{equation}

发现取 $k\sim n^{\frac 23}$ 时可以达到最佳时间复杂度 $O\left(n^{\frac 23}\right)$。

另外关于记忆化搜索的答案,建议用哈希表存储。

算法练习

习题一

洛谷p4213

题意

给定正整数 $n$,求

\begin{equation}\text{ans}_1=\sum_{i=1}^n\varphi(i)\end{equation}

\begin{equation}\text{ans}_2=\sum_{i=1}^n\mu(i)\end{equation}

题解

取 $f=\varphi,g=I$,则$(f\ast g)=id$,根据杜教筛有

\begin{equation}I(1)S(n)=\sum_{i=1}^n id(i)-\sum_{d=2}^n I(d)S(\lfloor\frac nd\rfloor)\end{equation}

\begin{equation}S(n)=\frac {n(n+1)}2-\sum_{d=2}^n S(\lfloor\frac nd\rfloor)\end{equation}

取 $f=\mu,g=I$,则$(f\ast g)=e$,根据杜教筛有

\begin{equation}I(1)S(n)=\sum_{i=1}^n e(i)-\sum_{d=2}^n I(d)S(\lfloor\frac nd\rfloor)\end{equation}

\begin{equation}S(n)=1-\sum_{d=2}^n S(\lfloor\frac nd\rfloor)\end{equation}

查看代码

查看代码

const int MAXP=5e6+5;  
bool vis[MAXP];
int prime[MAXP],mu[MAXP],cnt;
LL phi[MAXP];
template <typename T1,typename T2>
struct HASH_Table{
	static const int HASH_MOD=3000017,MAXS=5e6;
	struct cell{
		T1 key;T2 val;
		int next;
	}e[MAXS];
	int head[HASH_MOD],cnt;
	void clear(){mem(head,0);cnt=0;}
	T2 insert(T1 Key,T2 Value){
		int h=Key%HASH_MOD;
		e[++cnt].key=Key,e[cnt].val=Value,e[cnt].next=head[h];
		head[h]=cnt;
		return Value;
	}
	T2 find(T1 Key){
		int h=Key%HASH_MOD;
		for(int i=head[h];i;i=e[i].next){
			if(e[i].key==Key)
			return e[i].val;
		}
		return -1;
	}
};
HASH_Table<int,int> S_Mu;
HASH_Table<int,LL> S_Phi;
void Pre(){
	vis[1]=true,mu[1]=1,phi[1]=1;
	_for(i,2,MAXP){
		if(!vis[i])mu[i]=-1,phi[i]=i-1,prime[cnt++]=i;
		for(int j=0;j<cnt&&i*prime[j]<MAXP;j++){
			vis[i*prime[j]]=true;
			if(i%prime[j])
			mu[i*prime[j]]=-mu[i],phi[i*prime[j]]=phi[i]*(prime[j]-1);
			else{
				mu[i*prime[j]]=0,phi[i*prime[j]]=phi[i]*prime[j];
				break;
			}
		}
	}
	_for(i,2,MAXP)
	mu[i]+=mu[i-1],phi[i]+=phi[i-1];
}
int S_mu(int n){
	if(n<MAXP)
	return mu[n];
	if(S_Mu.find(n)!=-1)
	return S_Mu.find(n);
	int ans=1,lef=2,rig;
	while(lef<=n){
		rig=n/(n/lef);
		ans-=(rig-lef+1)*S_mu(n/lef);
		lef=rig+1;
	}
	return S_Mu.insert(n,ans);
}
LL S_phi(int n){
	if(n<MAXP)
	return phi[n];
	if(S_Phi.find(n)!=-1)
	return S_Phi.find(n);
	LL ans=1LL*n*(n+1)/2;
	int lef=2,rig;
	while(lef<=n){
		rig=n/(n/lef);
		ans-=1LL*(rig-lef+1)*S_phi(n/lef);
		lef=rig+1;
	}
	return S_Phi.insert(n,ans);
}
int main()
{
	int t=read_int(),n;
	Pre();
	while(t--){
		n=read_int();
		space(S_phi(n));
		enter(S_mu(n));
	}
    return 0;
}

习题二

洛谷p3768

题意

给定 $n,p$,计算

\begin{equation}\sum_{i=1}^n\sum_{j=1}^n ij\text{gcd}(i,j)\bmod p\end{equation}

题解

先把 $\text{gcd}$ 转化为莫比乌斯函数,有

\begin{equation}\sum_{i=1}^n\sum_{j=1}^n ij\text{gcd}(i,j)=\sum_{d=1}^n d\sum_{i=1}^n\sum_{j=1}^nij[(i,j)==d]=\sum_{d=1}^n d^3\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac nd\rfloor}ij[(i,j)==1]=\sum_{d=1}^n d^3\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac nd\rfloor}ij\sum_{k\mid (i,j)}\mu(k)\end{equation}

改变枚举顺序,有

\begin{equation}\sum_{d=1}^n d^3\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac nd\rfloor}ij\sum_{k\mid (i,j)}\mu(k)=\sum_{d=1}^n d^3\sum_{k=1}^{\lfloor\frac nd\rfloor}\mu(k)\sum_{k\mid i}^{i\le\lfloor\frac nd\rfloor}i\sum_{k\mid j}^{j\le\lfloor\frac nd\rfloor}j=\sum_{d=1}^n d^3\sum_{k=1}^{\lfloor\frac nd\rfloor}k^2\mu(k)\left(\sum_{i=1}^{\lfloor\frac n{dk}\rfloor}i\right)^2\end{equation}

设 $dk=T,S(n)=\sum_{i=1}^n i$,将 $k=\frac Td$ 代入,有

\begin{equation}\sum_{d=1}^n d^3\sum_{k=1}^{\lfloor\frac nd\rfloor}k^2\mu(k)\left(\sum_{i=1}^{\lfloor\frac n{dk}\rfloor}i\right)^2=\sum_{T=1}^n S(\lfloor\frac nT\rfloor)T^2\sum_{d\mid T} d\mu\left(\frac Td\right)=\sum_{T=1}^n S(\lfloor\frac nT\rfloor)T^2\varphi(T)\end{equation}

考虑数论分块 $+$ 杜教筛,设 $F(n)=\sum_{i=1}^nf(i),f(n)=n^2\varphi(n),g(n)=n^2$,有

\begin{equation}(f\ast g)(n)=\sum_{d\mid n}f(d)g(\frac nd)=\sum_{d\mid n}d^2\varphi(d)\left(\frac nd\right)^2=n^2\sum_{d\mid n}\varphi(d)=n^3\end{equation}

根据杜教筛公式,有

\begin{equation}F(n)=\sum_{i=1}^n i^3-\sum_{d=2}^n d^2F\left(\lfloor\frac nd\rfloor\right)\end{equation}

再根据 $\sum_{i=1}^n i^3=\left(\frac {n(n+1)}2\right)^2,\sum_{i=1}^n i^2=\frac {n(n+1)(2n+1)}6$,便可以快速计算出 $F(n)$。

事实上,杜教筛在计算出 $F(n)$ 的同时也计算出了所有 $F\left(\lfloor\frac nd\rfloor\right)$ 的值。

所以利用记忆化搜索,外层嵌套分块不影响时间复杂度,仍为 $O\left(n^{\frac 23}\right)$。

查看代码

查看代码

int mod,inv2,inv6;
int quick_pow(LL a,LL b,int mod){
	LL t=1;
	while(b){
		if(b&1)
		t=t*a%mod;
		a=a*a%mod;
		b>>=1;
	}
	return t%mod;
}
template <typename T1,typename T2>
struct HASH_Table{
	static const int HASH_MOD=3000017,MAXS=5e6;
	struct cell{
		T1 key;T2 val;
		int next;
	}e[MAXS];
	int head[HASH_MOD],cnt;
	void clear(){mem(head,0);cnt=0;}
	T2 insert(T1 Key,T2 Value){
		int h=Key%HASH_MOD;
		e[++cnt].key=Key,e[cnt].val=Value,e[cnt].next=head[h];
		head[h]=cnt;
		return Value;
	}
	T2 find(T1 Key){
		int h=Key%HASH_MOD;
		for(int i=head[h];i;i=e[i].next){
			if(e[i].key==Key)
			return e[i].val;
		}
		return -1;
	}
};
HASH_Table<LL,int> pre_2;
const int MAXP=8e6;
bool vis[MAXP];
int prime[MAXP],pre_1[MAXP],cnt;
void Pre(){
	vis[1]=true,pre_1[1]=1;
	_for(i,2,MAXP){
		if(!vis[i])pre_1[i]=i-1,prime[cnt++]=i;
		for(int j=0;j<cnt&&i*prime[j]<MAXP;j++){
			vis[i*prime[j]]=true;
			if(i%prime[j])
			pre_1[i*prime[j]]=pre_1[i]*(prime[j]-1);
			else{
				pre_1[i*prime[j]]=pre_1[i]*prime[j];
				break;
			}
		}
	}
	_for(i,2,MAXP)
	pre_1[i]=(1LL*i*i%mod*pre_1[i]+pre_1[i-1])%mod;
}
int Pow_1s(LL n){n%=mod;return n*(n+1)%mod*inv2%mod;}
int Pow_2s(LL n){n%=mod;return n*(n+1)%mod*(2*n+1)%mod*inv6%mod;}
int Pow_3s(LL n){n%=mod;LL t=n*(n+1)%mod*inv2%mod;return t*t%mod;}
int S(LL n){
	if(n<MAXP)
	return pre_1[n];
	if(pre_2.find(n)!=-1)
	return pre_2.find(n);
	LL ans=Pow_3s(n),lef=2,rig;
	while(lef<=n){
		rig=n/(n/lef);
		ans=(ans-1LL*(Pow_2s(rig)-Pow_2s(lef-1))*S(n/lef))%mod;
		lef=rig+1;
	}
	return pre_2.insert(n,ans);
}
int cal(LL n){
	LL ans=0,lef=1,rig,t;
	while(lef<=n){
		rig=n/(n/lef);
		t=Pow_1s(n/lef);t=t*t%mod;
		ans=(ans+t*(S(rig)-S(lef-1)))%mod;
		lef=rig+1;
	}
	return (ans+mod)%mod;
}
int main()
{
	mod=read_int();
	inv2=quick_pow(2,mod-2,mod);
	inv6=quick_pow(6,mod-2,mod);
	Pre();
	enter(cal(read_LL()));
    return 0;
}