解法: 对于$a_i$,产生的lcm有$lcm(a_i,a_1),\ldots,lcm(a_i,a_{i-1}),lcm(a_i,a_{i+1}),\ldots,lcm(a_i,a_n)$,则它们的gcd为$gcd_i=gcd(lcm(a_i,a_1),\ldots,lcm(a_i,a_{i-1}),lcm(a_i,a_{i+1}),\ldots,lcm(a_i,a_n))$,由于它们中的每一项都含有$a_i$,故$a_i$必为$gcd_i$的因子,那么可化简为$gcd_i=lcm(a_i,gcd(a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n))$,那么答案为$gcd(gcd_1,\ldots,gcd_n)$