对于一个多项式$A(x)$,如果存在另一个多项式$B(x)$,有$deg B(x) \leq deg A(x) $,且$A(x)B(x) \equiv 1 (\mod x^{n})$,那么称$B(x)$为$A(x)$在$\mod x^{n}$下的逆元,记为$A^{-1}(x)$
当$n=1$时,$A(x) \equiv c (\mod x)$,此时$A^{-1}(x) \equiv c^{-1}$
不妨设$A(x)B^{'}(x) \equiv 1 (\mod x^{\lceil \frac{n}{2} \rceil})$,$A(x)B(x) \equiv 1 (\mod x^{n})$
显然,也有$A(x)B(x) \equiv 1 (\mod x^{\lceil \frac{n}{2} \rceil})$
和第一个式子相减,可得$B(x) \equiv B^{'}(x) (\mod x^{\lceil \frac{n}{2} \rceil})$
移项,两边平方,有$B^{2}(x)-2B(x)B^{'}(x)+B^{'2}(x) \equiv 0 (\mod x^{n})$
两边同乘$A(x)$,化简可得$B(x) \equiv 2B^{'}(x)-A(x)B^{'2}(x) (\mod x^{n})$
于是就可以根据最后一个式子递归计算了.在计算的时候需要拿NTT来实现多项式乘法的过程.总的时间复杂度为$O(n\log n)$.
IL void PolyInv(LL x[],LL y[],int len){ int i=0; if (len==1) { y[0]=Mi(x[0],MOD-2); return; } PolyInv(x,y,len>>1); for (i=0;i<len;i++) X[i]=x[i],Y[i]=y[i]; NTT(X,len<<1,1); NTT(Y,len<<1,1); for (i=0;i<(len<<1);i++) X[i]=((X[i]*Y[i])%MOD*Y[i])%MOD; NTT(X,len<<1,-1); for (i=0;i<len;i++) y[i]=((y[i]<<1)%MOD+MOD-X[i])%MOD; }
给出两个多项式$F(x)$,$G(x)$,求$D(x)$,$R(x)$,使得$F(x)=D(x)G(x)+R(x)$.其中,$F(x)$为$n$次多项式,$G(x)$为$m$次多项式,$m \leq n$.要求求出的$D(x)$为$n-m $次多项式.
首先定义翻转操作:对于一个$n$次多项式$A(x)$,它的翻转多项式为$A^{r}(x)=x^{n}A(\frac{1}{x})$.假如说$A(x)=x^{2}+2x+3$,那么$A^{r}(x)=3x^{2}+2x+1$,也就是把系数翻转了一下.
定义了翻转操作后,对上面这个多项式除法式进行一下变形,将$\frac{1}{x}$替代$x$,两边同乘$x^{n}$.
得到$x^{n}F(\frac{1}{x})=x^{m}G(\frac{1}{x})x^{n-m}D(\frac{1}{x})+x^{n-m+1}x^{m-1}R(\frac{1}{x})$
化简,有$F^{r}(x)=G^{r}(x)D^{r}(x)+x^{n-m+1}R^{r}(x)$
两边同模$x^{n-m+1}$,则$R^{r}(x)$这一项显然会被消掉,只剩下
$F^{r}(x) \equiv G^{r}(x)D^{r}(x) (\mod x^{n-m+1})$
已知$D(x)$的次数是$n-m$次,也就是说在上面的模意义下,$D(x)$的所有项都会保留下来.进一步变形,就有
$D^{r}(x) \equiv F^{r}(x)G^{-1r}(x) (\mod x^{n-m+1})$
然后利用上面的求逆元过程,算出$D^{r}(x)$,翻转就可以得到$D(x)$了.然后带回到原式,就可以算出$R(x)$.总的时间复杂度也是$O(n \log n)$.
IL void PolyMul(LL a[],LL b[],LL c[],int l1,int l2){ reg int i=0,L=Max(l1,l2),len=1; for (;len<=L;len<<=1); len<<=1; for (i=0;i<=l1;i++) X[i]=a[i]; for (i=0;i<=l2;i++) Y[i]=b[i]; NTT(X,len,1); NTT(Y,len,1); for (i=0;i<=len;i++) c[i]=(X[i]*Y[i])%MOD,X[i]=Y[i]=0; NTT(c,len,-1); } IL void PolyDiv(LL x[],LL y[],LL a[],LL b[]){ reg int i=0,len=1; reverse(x,x+1+n); reverse(y,y+1+m); for (;len<=(n-m);len<<=1); PolyInv(y,s,len); memset(X,0,sizeof(X)); memset(Y,0,sizeof(Y)); PolyMul(x,s,a,n-m,n-m); reverse(a,a+n-m+1); reverse(x,x+1+n); reverse(y,y+1+m); PolyMul(a,y,b,n-m,m); for (i=0;i<m;i++) b[i]=(f[i]-b[i]+MOD)%MOD; }
假如说求$B(x)$,使得$B(x)^{2} \equiv A(x) (\mod x^{n})$.不妨设$B'(x)^{2} \equiv A(x) (\mod x^{\lceil \frac{n}{2} \rceil})$.同时,已知$B(x)^{2} \equiv A(x) (\mod x^{\lceil \frac{n}{2} \rceil})$.
两个等式相减,再平方,可得$B'(x)^{4}-2B'(x)^{2}B(x)^{2}+B(x)^{4} \equiv 0 (\mod x^{n})$
做一下变形,有$B'(x)^{4}+2B'(x)^{2}B(x)^{2}+B(x)^{4} \equiv 4B'(x)^{2}B(x)^{2} (\mod x^{n})$
故有$B'(x)^{2}+B(x)^{2}\equiv 2B(x)B'(x) (\mod x^{n})$
将已知条件代入,有$B(x) \equiv \frac{A(x)+B'(x)^{2}}{2B'(x)}$
和多项式求逆那样递归计算即可.
有一个问题是,当递归到$n=1$的时候,要求常数项在模意义下开根.洛谷上的例题规定了常数项一定为1,所以保证有解.如果不规定常数项的话,还需要通过二次剩余来判断解的存在性.
注意数组大小要开到8倍以上.
IL void PolySqrt(LL a[],LL b[],int len){ reg int i=0; if (len==1){ b[0]=1; return; } PolySqrt(a,b,(len+1)>>1); memset(e,0,sizeof(e)); for (i=0;i<len;i++) c[i]=(b[i]<<1)%MOD; PolyInv(c,e,len); PolyMul(b,b,d,len,len); for (i=0;i<len;i++) b[i]=(d[i]+a[i])%MOD; PolyMul(b,e,b,len,len); }
原理应该不用多讲了…直接算就行了,积分的时候除上逆元.
IL void PolyDx(LL a[],LL b[],LL len){ reg LL i=0; for (i=0;i<=len;i++) b[i]=(a[i+1]*(i+1))%MOD; } IL void PolyInte(LL a[],LL b[],LL len){ reg LL i=0; b[0]=0; for (i=1;i<=len;i++) b[i]=(a[i-1]*Mi(i,MOD-2))%MOD; }
给出$A(x)$,求$B(x)$,使得$B(x) \equiv ln(A(x)) (\mod x^{n})$
对原式两边求导,有$B'(x) \equiv \frac{A'(x)}{A(x)} (\mod x^{n})$
通过多项式的求导和求逆算出$B'(x)$后,再积分即可得到$B(x)$.
IL void PolyLn(LL a[],LL b[],LL len){ PolyDx(a,d,len); PolyInv(a,c,len); PolyMul(d,c,d,len,len); PolyInte(d,b,len); }
需要一些多项式牛顿迭代的基础.
求一个多项式$G(x)$,使得$F(G(x)) \equiv 0 (\mod x^{n})$.如果说已经求出来了$F(G_{0}(x)) \equiv 0 (\mod x^{\lceil \frac{n}{2} \rceil})$,将$F(G(x))$在$G_{0}(x)$处展开,因为$G(x)-G_{0}(x)$的最低次数已经是$\lceil \frac{n}{2} \rceil$了,所以这一项平方之后,在模$x^{n}$意义下为0.故泰勒展开只需要保留前两项,也就是:
$F(G(x)) = F(G_{0}(x)) +(G(x)-G_{0}(x))F'(G_{0}(x)) \equiv 0 (\mod x^{n})$
其中的$F'(x)$表示一阶导.化简,有$G(x) \equiv G_{0}(x)-\frac{F(G_{0}(x))}{F'(G_{0}(x))} (\mod x^{n})$.
然后回到这个问题上.现在是要求$B(x) \equiv e^{A(x)} (\mod x^{n})$.两边求对数,化简,有$ln(B(x))-A(x) \equiv 0 (\mod x^{n})$.
这个时候,构造$F(G(x))=lnG(x)-A(x)$.利用牛顿迭代不断求解就行了.
式子的话,$(F(G(x)))'=\frac{G'(x)}{G(x)}$.把它带到迭代 的式子中,化简一下就有$G(x)=G_{0}(x)-\frac{G_{0}(x)(1-lnG_{0}(x)+A(x))}{G'_{0}(x)}$
最后根据上面这个式子就可以递归计算了.
因为要多次算Ln,所以中间用到的两个数组需要清空一下
不知道哪个环节有问题,这个板子的常数极大,而且是别人平均时间的两倍左右…有待优化.
IL void PolyLn(LL a[],LL b[],LL len){ PolyDx(a,d,len); PolyInv(a,c,len); PolyMul(d,c,d,len,len); PolyInte(d,b,len); for (LL i=0;i<=len;i++) c[i]=d[i]=0; } IL void PolyExp(LL a[],LL b[],LL len){ reg LL i=0; if (len==1){ b[0]=1; return; } PolyExp(a,b,len>>1); for (i=0;i<=len;i++) e[i]=0; PolyLn(b,e,len); for (i=0;i<len;i++) e[i]=(((i==0)?1:0)-e[i]+a[i]+MOD)%MOD; PolyMul(b,e,b,len,len); }
会了求导和求对数之后就很简单了.
$B(x) \equiv A(x)^{k}$,求导,有$lnB(x) \equiv klnA(x)$.
求导,乘以$k$,再exp回去就行了.
因为同时使用了对数和指数的原因,常数极大.
IL void PolyMi(LL a[],LL b[],LL len,LL k){ reg int i=0; PolyLn(a,p,len); for (i=0;i<=len;i++) p[i]=(p[i]*k)%MOD; PolyExp(p,b,len); }
根据著名的欧拉公式:$e^{ix}=\cos x+i\sin x$.代入正负$x$,然后解方程,有:
$\sin x=\frac{e^{ix}-e^{-ix}}{2i}$
$\cos x=\frac{e^{ix}+e^{-ix}}{2}$
然后就是一波玄学操作:$i^{2}=-1$,$i^{2} \equiv -1 (\mod 998244353)$,$i \equiv 86583718 (\mod 998244353)$,$i^{-1} () $
分子分母上的$i$就搞定了.
没学过复变,但是感觉复变老师看到这一段可能想打人
这里参考大佬的博客给NTT加了一个预处理的优化,但是效果不是特别理想.
IL void Ready(){ reg LL i=0; for (i=2;i<=800000;i<<=1) Wn[i]=Mi(3,(MOD-1)/i),WN[i]=Mi(Wn[i],MOD-2); }
所以还是依靠O2,O3优化靠谱一些.慎重使用这个板子吧.
IL void PolySin(LL a[],LL b[],LL len){ reg LL i=0,u=86583718,invu=Mi(u,MOD-2),inv2=Mi(2,MOD-2),inv=0; for (i=0;i<=len;i++) a[i]=(a[i]*u)%MOD; PolyExp(a,p,len); PolyInv(p,b,len); inv=(inv2*invu)%MOD; for (i=0;i<=len;i++) b[i]=(p[i]-b[i]+MOD)%MOD; for (i=0;i<=len;i++) b[i]=(b[i]*inv)%MOD; } IL void PolyCos(LL a[],LL b[],LL len){ reg LL i=0,u=86583718,invu=Mi(u,MOD-2),inv2=Mi(2,MOD-2); for (i=0;i<=len;i++) a[i]=(a[i]*u)%MOD; PolyExp(a,p,len); PolyInv(p,b,len); for (i=0;i<=len;i++) b[i]=(p[i]+b[i])%MOD; for (i=0;i<=len;i++) b[i]=(b[i]*inv2)%MOD; }
首先,有
$\frac{d}{dx}\arcsin x=\frac{1}{\sqrt{1-x^{2}}}$
$\frac{d}{dx}\arctan x=\frac{1}{1+x^{2}}$
根据这个式子,将多项式代入,再积分,就有
$B(x)=\int \frac{A'(x)}{\sqrt{1-A'(x)^{2}}}$
$B(x)=\int \frac{A'(x)}{1+A'(x)^{2}}$
所以只需要多项式求导,求逆,开根,积分就能完成反三角函数的求解.
IL void PolyArcsin(LL a[],LL b[],LL len){ reg int i=0; PolyDx(a,p,len); PolyMul(a,a,q,len,len); for (i=0;i<=len;i++) q[i]=(MOD-q[i])%MOD; q[0]=Upd(q[0]+1-MOD); PolySqrt(q,w,len); memset(q,0,sizeof(q)); PolyInv(w,q,len); PolyMul(p,q,p,len,len); PolyInte(p,b,len); } IL void PolyArctan(LL a[],LL b[],LL len){ PolyDx(a,p,len); PolyMul(a,a,q,len,len); q[0]=(q[0]+1)%MOD; PolyInv(q,w,len); PolyMul(p,w,p,len,len); PolyInte(p,b,len); }
洛谷上有上面各个模板的板子题,直接搜多项式就能找到.
还有一道综合些的题目:LOJ 挑战多项式
题意:求
$$G(x) \equiv ((1+ln(2+F(x)-F(0)-exp(\int _{0}^{x}\frac{1}{\sqrt{F(x)}})))^{k})' (\mod x^{n})$$
题解:
多项式大杂烩,套一下上面的板子就行了.