题号 | A | B | C | D | E | F | G | H | I | J | K |
---|---|---|---|---|---|---|---|---|---|---|---|
状态 | - | O | O | - | O | - | Ø | O | - | O | O |
O 在比赛中通过 Ø 赛后通过 ! 尝试了但是失败了 - 没有尝试
比赛时间
2020-07-27 12:00-17:00
求 $n$ 个 $n$ 维 $01$ 向量线性无关的概率。
找到分子的通项 $2^{\frac {n(n-1)}2} \prod_{i=1}^n(2^i-1)$,线性的 $dp$ 一下求出来。
code
code
#pragma GCC optimize(2) #pragma GCC optimize(3,"Ofast","inline") #include<bits/stdc++.h> #define ALL(x) (x).begin(),(x).end() #define ll long long #define db double #define ull unsigned long long #define pii_ pair<int,int> #define mp_ make_pair #define pb push_back #define fi first #define se second #define rep(i,a,b) for(int i=(a);i<=(b);i++) #define per(i,a,b) for(int i=(a);i>=(b);i--) #define show1(a) cout<<#a<<" = "<<a<<endl #define show2(a,b) cout<<#a<<" = "<<a<<"; "<<#b<<" = "<<b<<endl using namespace std; const ll INF = 1LL<<60; const int inf = 1<<30; const int maxn = 2e7+5; const int M = 1e9+7; inline void fastio() {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);} ll qpow(ll a,ll b) {ll s=1;while(b){if(b&1)s=(s*a)%M;a=(a*a)%M;b>>=1;}return s;} int ans[maxn],inv2[maxn],s[maxn],s2[maxn]; void init() { int n = 2e7; inv2[1] = qpow(2,M-2); rep(i,2,n){ inv2[i] = 1LL*inv2[i-1]*inv2[1]%M; } rep(i,2,n){ inv2[i] = 2LL*inv2[i-1]%M*inv2[i]%M*inv2[i]%M; } ll pow2 = 1; s[0] = s2[0] = 1; rep(i,1,n) { s[i] = 1LL * s[i-1] * pow2 % M; pow2 = 2LL * pow2%M; s2[i] = 1LL * s2[i-1] * (pow2-1)%M; } rep(i,1,n){ ans[i] = 1LL * s[i] * s2[i] % M * inv2[i] % M; } rep(i,2,n) ans[i] ^= ans[i-1]; } int main() { fastio();init(); int _; for(cin>>_;_;_--){ int n; cin>>n; cout<<ans[n]<<endl; } return 0; }
定义一个矩阵的压强是矩阵和除以最下面一行的和,现在要从一个矩阵中取一个子矩阵使得这个矩阵的压强最大。
首先我们可以意识到,如果取了$a_{i,j}$作为底中的一个元素,那么取$a_{1…i-1,j}$一定是更最优的,我们考虑两个单列矩阵,如果一列的压强是$a$,另一列的压强是$b$,且$a>b$,那么把后一列加入第一列一定会使压强变小,所以最优的应该是某个元素到顶的。预处理前缀和然后枚举底就行了。
code
code
#pragma GCC optimize(2) #pragma GCC optimize(3,"Ofast","inline") #include<bits/stdc++.h> #define ALL(x) (x).begin(),(x).end() #define ll long long #define db double #define ull unsigned long long #define pii_ pair<int,int> #define mp_ make_pair #define pb push_back #define fi first #define se second #define rep(i,a,b) for(int i=(a);i<=(b);i++) #define per(i,a,b) for(int i=(a);i>=(b);i--) #define show1(a) cout<<#a<<" = "<<a<<endl #define show2(a,b) cout<<#a<<" = "<<a<<"; "<<#b<<" = "<<b<<endl using namespace std; const ll INF = 1LL<<60; const int inf = 1<<30; const int maxn = 2e7+5; const int M = 1e9+7; inline void fastio() {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);} ll qpow(ll a,ll b) {ll s=1;while(b){if(b&1)s=(s*a)%M;a=(a*a)%M;b>>=1;}return s;} int ans[maxn],inv2[maxn],s[maxn],s2[maxn]; void init() { int n = 2e7; inv2[1] = qpow(2,M-2); rep(i,2,n){ inv2[i] = 1LL*inv2[i-1]*inv2[1]%M; } rep(i,2,n){ inv2[i] = 2LL*inv2[i-1]%M*inv2[i]%M*inv2[i]%M; } ll pow2 = 1; s[0] = s2[0] = 1; rep(i,1,n) { s[i] = 1LL * s[i-1] * pow2 % M; pow2 = 2LL * pow2%M; s2[i] = 1LL * s2[i-1] * (pow2-1)%M; } rep(i,1,n){ ans[i] = 1LL * s[i] * s2[i] % M * inv2[i] % M; } rep(i,2,n) ans[i] ^= ans[i-1]; } int main() { fastio();init(); int _; for(cin>>_;_;_--){ int n; cin>>n; cout<<ans[n]<<endl; } return 0; }
给一个数字 $k$,要构造一个 $1-n$ 的排列,满足对于 $i \in [1,n]$ 都存在一个长度为 $i$ 子串,使得这个子串内数字的和模 $n$ 等于 $k$。
首先考虑 $i=n$的情况,得出结论 $n$ 为偶数时,$k=\frac n2$才有解,否则 $k=0$ 才有解。然后再考虑如何构造,当 $n$ 为偶数时,把 $n$ 和 $k$ 放最左边,然后依次从右边加入 $i,n-i$。当 $n$ 为奇数时,先在最左边放 $n$ 然后依次放入$i,n-i$。
code
code
#include<bits/stdc++.h> #define ALL(x) (x).begin(),(x).end() #define ll long long #define db double #define ull unsigned long long #define pii_ pair<int,int> #define mp_ make_pair #define pb push_back #define fi first #define se second #define rep(i,a,b) for(int i=(a);i<=(b);i++) #define per(i,a,b) for(int i=(a);i>=(b);i--) #define show1(a) cout<<#a<<" = "<<a<<endl #define show2(a,b) cout<<#a<<" = "<<a<<"; "<<#b<<" = "<<b<<endl using namespace std; const ll INF = 1LL<<60; const int inf = 1<<30; const int maxn = 5e5+5; inline void fastio() {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);} int main() { fastio(); int n,k; cin>>n>>k; if(n%2==0){ if(k!=n/2) cout<<-1<<endl; else{ cout<<n<<" "<<k<<" "; rep(i,1,k-1) cout<<i<<" "<<n-i<<" "; cout<<endl; } }else{ if(k) cout<<-1<<endl; else{ cout<<n; rep(i,1,n/2) cout<<" "<<i<<" "<<n-i; cout<<endl; } } return 0; }
$n\times n$ 方格框架涂色, $k$ 种颜色出现次数相等,构造一种方案使得每一行每一列都有至少两种颜色,且同色的边不构成环。
从上到下从左到右按 $1$ 到 $k$ 循环填就好了。
点击以显示 ⇲
点击以隐藏 ⇱
#include<bits/stdc++.h> #define ll long long #define pii pair<int,int> #define mp make_pair using namespace std; const int N=205; int r[N][N],c[N][N]; int main() { int t; scanf("%d",&t); while(t--) { int n,k; scanf("%d%d",&n,&k); if(k==1||n==1||2*(n+1)*n%k){printf("-1\n");continue;} int res=0; for(int i=1;i<=n;i++) { for(int j=1;j<=n;j++)r[i][j]=res,res=(res+1)%k; for(int j=1;j<=n+1;j++)c[j][i]=res,res=(res+1)%k; } for(int i=1;i<=n;i++)r[n+1][i]=res,res=(res+1)%k; for(int i=1;i<=n+1;i++) { for(int j=1;j<=n;j++)printf("%d ",c[i][j]+1); puts(""); } for(int i=1;i<=n+1;i++) { for(int j=1;j<=n;j++)printf("%d ",r[i][j]+1); puts(""); } } return 0; }
数位dp。状态记录一下数位和差值、 $A\le B$ 的限制和 $B\le N$ 的限制即可。
点击以显示 ⇲
点击以隐藏 ⇱
#pragma GCC optimize(2) #pragma GCC optimize(3,"Ofast","inline") #include<bits/stdc++.h> #define ll long long using namespace std; const int N=105; const ll mod=1e9+7; char s[N]; ll dp[N][2005][2][2]; ll dfs(int dep,int d,bool lim1,bool lim2) { if(dep>=strlen(s))return (d>0); if(dp[dep][d+900][lim1][lim2]!=-1) return dp[dep][d+900][lim1][lim2]; dp[dep][d+900][lim1][lim2] = 0; for(int i=0;i<10;i++) for(int j=0;j<10;j++) { if(lim2&&j>s[dep]-'0')continue; if(lim1&&i>j)continue; dp[dep][d+900][lim1][lim2]+=dfs(dep+1,d+i-j,lim1&&(i==j),lim2&&(j==s[dep]-'0')); dp[dep][d+900][lim1][lim2]%=mod; } return dp[dep][d+900][lim1][lim2]; } int main() { memset(dp,-1,sizeof(dp)); scanf("%s",s); printf("%lld\n",dfs(0,0,1,1)); return 0; }
对排列 $1,2,3,\cdots,n$ 做 $m$ 次操作。每次操作是进行 $x$ 次 $k$ 约瑟夫问题。求最后的排列。
把操作看成置换,如果已知一次 $k$ 约瑟夫问题的置换,那么可以用类似快速幂的方法在 $nmlogx$ 得到答案。考虑如何求一次 $k$ 约瑟夫问题的置换,用线段树暴力模拟就行,复杂度为 $nmlogn$。所以总复杂度$nm(logn + logx)$
code
code
#include<bits/stdc++.h> #define ALL(x) (x).begin(),(x).end() #define ll long long #define db double #define ull unsigned long long #define pii_ pair<int,int> #define mp_ make_pair #define pb push_back #define fi first #define se second #define rep(i,a,b) for(int i=(a);i<=(b);i++) #define per(i,a,b) for(int i=(a);i>=(b);i--) #define show1(a) cout<<#a<<" = "<<a<<endl #define show2(a,b) cout<<#a<<" = "<<a<<"; "<<#b<<" = "<<b<<endl using namespace std; const ll INF = 1LL<<60; const int inf = 1<<30; const int maxn = 1e5+5; inline void fastio() {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);} int a[maxn],n,b[maxn],tmp[maxn]; int tr[maxn<<2]; void build(int id,int l,int r) { tr[id] = 0; if(l==r) {tr[id]=1;return ;} int mid = (l+r)>>1; build(id<<1,l,mid);build(id<<1|1,mid+1,r); tr[id] = tr[id<<1] + tr[id<<1|1]; } void update(int id,int stl,int str,int pos) { if(stl==str){ tr[id] = 0; return ; } int mid = (stl+str)>>1; if(pos<=mid) update(id<<1,stl,mid,pos); else update(id<<1|1,mid+1,str,pos); tr[id] = tr[id<<1] + tr[id<<1|1]; } int query(int id,int stl,int str,int l,int r) { if(stl==l && str==r){ return tr[id]; } int mid = (stl+str)>>1; if(r<=mid) return query(id<<1,stl,mid,l,r); else if(l>mid) return query(id<<1|1,mid+1,str,l,r); else return query(id<<1,stl,mid,l,mid) + query(id<<1|1,mid+1,str,mid+1,r); } int query2(int id,int l,int r,int k) { if(l==r) return l; int mid = (l+r)>>1; if(tr[id<<1]>=k) return query2(id<<1,l,mid,k); else return query2(id<<1|1,mid+1,r,k-tr[id<<1]); } void perm(int *a,int *b,int x) { while(x){ if(x&1){ rep(i,1,n) tmp[i] = a[b[i]]; rep(i,1,n) a[i] = tmp[i]; } rep(i,1,n) tmp[i] = b[b[i]]; rep(i,1,n) b[i] = tmp[i]; x>>=1; } } int main() { fastio(); int m,k,x; cin>>n>>m; rep(i,1,n) a[i] = i; while(m--){ cin>>k>>x; build(1,1,n); int last = 0; rep(i,1,n){ int r = last==n?0:query(1,1,n,last+1,n); if(r>=k){ int pre = last?query(1,1,n,1,last):0; b[i] = query2(1,1,n,k+pre); update(1,1,n,b[i]); last = b[i]; }else{ int tt = k - r; tt %= (n-i+1); if(tt == 0) tt = n-i+1; b[i] = query2(1,1,n,tt); update(1,1,n,b[i]); last = b[i]; } } perm(a,b,x); } rep(i,1,n) cout<<a[i]<<" \n"[i==n]; return 0; }
问给出的序列是否是若干个$1-k$序列组成序列的子序列(好绕)
首先特判序列里有大于k的情况。
其余的上权值线段树,对于前k个位置,只要没有次数大于1就行,后面的dp转移,权值线段树查长度为k的区间是否次数都为1,如果是就转移,然后最后k个位置和前k个位置类似处理。
code
code
#include <bits/stdc++.h> #define il inline using namespace std; typedef long long ll; const int N=5e5+5; const int inf = 1e9+5; int mx[N<<2],a[N],id[N],cnt; bool f[N]; void build(int p,int l,int r) { mx[p] = 0; if (l==r) return ; int mid = (l+r)>>1; build(p<<1,l,mid); build(p<<1|1,mid+1,r); } void Update(int p,int l,int r,int a,int b) { if (l==r) { mx[p]+=b; return ; } int mid = (l+r)>>1; if (a<=mid)Update(p<<1,l,mid,a,b); else Update(p<<1|1,mid+1,r,a,b); mx[p] = max(mx[p<<1],mx[p<<1|1]); } int Getans(int p,int l,int r,int a,int b) { if (l>=a&&r<=b) return mx[p]; int mid = (l+r)>>1; int ans = 0; if (a<=mid)ans = max(ans,Getans(p<<1,l,mid,a,b)); if (b >mid)ans = max(ans,Getans(p<<1|1,mid+1,r,a,b)); return ans; } int getid(int x) { int l = 1,r = cnt+1; while (l<r) { int mid = (l+r)>>1; if (id[mid]<x)l = mid+1; else r = mid; } return l; } int main() { int cas; scanf("%d",&cas); while (cas--) { int n,k; scanf("%d%d",&n,&k); bool flag = false; for (int i = 1;i<= n;i++) { scanf("%d",&a[i]); if (a[i] > k || a[i] <= 0) flag = true; id[i] = a[i]; } if (flag) {printf("NO\n");continue;} cnt = 0; id[0] = -1; sort(id+1,id+n+1); for (int i = 1;i<= n;i++) if (id[cnt]!=id[i]) id[++cnt] = id[i]; build(1,1,cnt); for (int i = 1;i<= n;i++)f[i] = false; f[0] = true; for (int i = 1;i<= n && i <= k;i++) { Update(1,1,cnt,getid(a[i]),1); if (Getans(1,1,cnt,1,cnt)==1) f[i] = true; } for (int i = k+1;i<= n;i++) { int tp = i-k; Update(1,1,cnt,getid(a[i]),1); Update(1,1,cnt,getid(a[tp]),-1); if (Getans(1,1,cnt,1,cnt)==1) f[i] |= f[i-k]; } int bg = max(1,n-k+1); bool ans = f[n]; for (int i = bg;i<= n && !ans;i++) { if (f[i-1] && Getans(1,1,cnt,1,cnt)==1) ans = true; Update(1,1,cnt,getid(a[i]),-1); } if (ans) printf("YES\n"); else printf("NO\n"); } return 0; }