把题目化简之后,就是给一个序列 $a_i$ 要能高效地得到 $a_i - a_j$ 构成的集合。
构造两个生成函数 $\sum x^{a_i}$ 和 $\sum x^{-a_i}$,那么这两个多项式相乘得到的答案 $f(x)$ 中如果 $x^i$ 的系数不为 $0$ 则 $i$ 可以被表示为序列中某两个数的差。
code
code
/* #pragma GCC optimize(2) #pragma GCC optimize(3,"Ofast","inline") */ #include<bits/stdc++.h> #define ALL(x) (x).begin(),(x).end() #define ll long long #define db double #define ull unsigned long long #define pii_ pair<int,int> #define mp_ make_pair #define pb push_back #define fi first #define se second #define rep(i,a,b) for(int i=(a);i<=(b);i++) #define per(i,a,b) for(int i=(a);i>=(b);i--) #define show1(a) cout<<#a<<" = "<<a<<endl #define show2(a,b) cout<<#a<<" = "<<a<<"; "<<#b<<" = "<<b<<endl using namespace std; const ll INF = 1LL<<60; const int inf = 1<<30; const int maxn = 1e6+5; const int M = 998244353; inline void fastio() {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);} ll qpow(ll a,ll b) {ll s=1;while(b){if(b&1)s=s*a%M;a=a*a%M;b>>=1;}return s;} int rev[maxn],f[maxn]; ll A[maxn],B[maxn]; void trans(ll a[],int lim,int type) { rep(i,1,lim-1) if(i<rev[i]) swap(a[i],a[rev[i]]); for(int mid=1;mid<lim;mid<<=1){ ll wn = qpow(3,(M-1)/mid/2); if(type==-1) wn = qpow(wn,M-2); for(int R=mid<<1,j=0;j<lim;j+=R){ ll w = 1; for(int k=0;k<mid;k++,w=w*wn%M){ ll x=a[j+k],y=w*a[j+mid+k]%M; a[j+k] = (x+y)%M; a[j+mid+k] = (x-y+M)%M; } } } if(type==-1){ ll inv = qpow(lim,M-2); rep(i,0,lim) a[i] = a[i]*inv%M; } } int main() { fastio(); memset(f,-1,sizeof(f)); int n,x,y; cin>>n>>x>>y; rep(i,0,n){ int a;cin>>a; A[a] = 1; B[x-a] = 1; } int lim=1,l=0; while(lim<=(int)4e5) lim<<=1,l++; rep(i,1,lim-1) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(l-1)); trans(A,lim,1);trans(B,lim,1); rep(i,0,lim) A[i] = A[i] * B[i] %M; trans(A,lim,-1); rep(i,x+1,lim){ if(2*(y + i-x) > (int)1e6) break; if(A[i] > 0) f[2*(y + i-x)] = 2*(y + i-x); } rep(i,4,1000000){ if(f[i]==-1) continue; for(int j = i+i;j<=1000000;j+=i){ f[j] = max(f[j],f[i]); } } int q; cin>>q; while(q--){ int l; cin>>l; cout<<f[l]<<" "; } return 0; }
先考虑如何用 $\text{FFT}$ 做和 $\text{KMP}$ 一样的事:
记 $s$ 串为长度为 $m$ 的模式串,$t$ 串为长度为 $n$ 的文本串,下标均从 $0$ 开始。目标是找出所有 $x$ 满足 $\forall i\in [0,m),t_{x-m+i+1} = s_i$。
上述条件可用一个式子来表示 $\sum _{i=0}^{m-1} (s_i - t_{x-m+i+1})^2 = 0$,展开后为 $\sum _{i=0}^{m-1} s_i^2 + t_{x-m+i+1}^2 - 2\cdot s_i\cdot t_{x-m+i+1}$。
两个平方项都可以通过前缀和得到。乘积项转换一下就会变成一个卷积的形式:把 $s$ 串翻转一下得到 $rs$ 串,于是乘积项就是 $\sum _{i=0}^{m-1} 2\cdot rs_{m-i-1} \cdot t_{x-m+i+1} = \sum _{i=0}^{m-1} 2\cdot rs_i \cdot t_{x-i}$。所以这里就可以用$\text{FFT}$处理的到。
最后的判断条件:卷积之后的多项式为 $f(x)$,在 $t$ 串的 $x$ 位置匹配当且仅当 $f(x) + pres[m-1] + pret[x] - pret[x-m-2] = 0$。总复杂度为 $O(nlogn)$。
虽然 $\text{FFT}$ 多了一个 $log$ 的复杂度,但有些匹配是 $\text{KMP}$ 无法做但是 $\text{FFT}$ 可以做。
在正常匹配的基础上扩大了字符集的范围,多了一种 $*$ 字符(可以匹配任何字符)。这样之后就不能用 $\text{KMP}$ 了,因为 $\text{KMP}$ 需要满足一种等价关系,而通配符 $*$ 的存在就不满足等价关系:$a = * 且 b = *$ 但没有传递性 $a = b$。
考虑用上述一样的方法来构造多项式函数 $\sum_{i=0}^{m-1} (s_i - t_{x-m+i+1})^2 \cdot s_i \cdot t_i $。这样就可以得到答案了。
code
code
#pragma GCC optimize(2) #pragma GCC optimize(3,"Ofast","inline") #include<bits/stdc++.h> #define ALL(x) (x).begin(),(x).end() #define ll long long #define db double #define ull unsigned long long #define pii_ pair<int,int> #define mp_ make_pair #define pb push_back #define fi first #define se second #define rep(i,a,b) for(int i=(a);i<=(b);i++) #define per(i,a,b) for(int i=(a);i>=(b);i--) #define show1(a) cout<<#a<<" = "<<a<<endl #define show2(a,b) cout<<#a<<" = "<<a<<"; "<<#b<<" = "<<b<<endl using namespace std; const ll INF = 1LL<<60; const int inf = 1<<30; const int maxn = 12e5+5; const int M = 998244353; inline void fastio() {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);} ll qpow(ll a,ll b) {ll s=1;while(b){if(b&1)s=s*a%M;a=a*a%M;b>>=1;}return s;} int rev[maxn]; ll A[maxn],B[maxn],C[maxn]; void trans(ll a[],int lim,int type) { rep(i,1,lim-1) if(i<rev[i]) swap(a[i],a[rev[i]]); for(int mid=1;mid<lim;mid<<=1){ ll wn = qpow(3,(M-1)/mid/2); if(type==-1) wn = qpow(wn,M-2); for(int R=mid<<1,j=0;j<lim;j+=R){ ll w = 1; for(int k=0;k<mid;k++,w=w*wn%M){ ll x=a[j+k],y=w*a[j+mid+k]%M; a[j+k] = (x+y)%M; a[j+mid+k] = (x-y+M)%M; } } } if(type==-1){ ll inv = qpow(lim,M-2); rep(i,0,lim) a[i] = a[i]*inv%M; } } char t[maxn],s[maxn]; int idt[maxn],ids[maxn]; int main() { fastio(); int n,m; cin>>n>>m; cin>>t>>s; reverse(t,t+n); rep(i,0,n-1) idt[i] = t[i]=='*'?0:t[i]-'a'+1; rep(i,0,m-1) ids[i] = s[i]=='*'?0:s[i]-'a'+1; int lim = 1,l = 0; while(lim<=n+m) lim<<=1,l++; rep(i,1,lim-1) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(l-1)); rep(i,0,n-1){ A[i] = idt[i]; } rep(i,0,m-1){ B[i] = ids[i]*ids[i]*ids[i]; } trans(A,lim,1);trans(B,lim,1); rep(i,0,lim) C[i] = C[i] + A[i] * B[i]; memset(A,0,sizeof(A)); memset(B,0,sizeof(B)); rep(i,0,n-1){ A[i] = idt[i]*idt[i]; } rep(i,0,m-1){ B[i] = ids[i]*ids[i]; } trans(A,lim,1);trans(B,lim,1); rep(i,0,lim) C[i] = C[i] - 2LL * A[i] * B[i]; memset(A,0,sizeof(A)); memset(B,0,sizeof(B)); rep(i,0,n-1){ A[i] = idt[i]*idt[i]*idt[i]; } rep(i,0,m-1){ B[i] = ids[i]; } trans(A,lim,1);trans(B,lim,1); rep(i,0,lim) C[i] = C[i] + A[i] * B[i]; trans(C,lim,-1); vector<int> ans; rep(i,n-1,m-1){ if(C[i] == 0) ans.pb(i-n+2); } cout<<ans.size()<<endl; for(int x:ans) cout<<x<<" "; return 0; }
在普通匹配的基础上添加条件 $p(s_i) = t_i$ 时也算匹配。$p$ 是题目给的一个置换。
同样不满足传递性,因此只能用 $\text{FFT}$ 匹配。
code
code
#pragma GCC optimize(2) #pragma GCC optimize(3,"Ofast","inline") #include<bits/stdc++.h> #define ALL(x) (x).begin(),(x).end() #define ll long long #define db double #define ull unsigned long long #define pii_ pair<int,int> #define mp_ make_pair #define pb push_back #define fi first #define se second #define rep(i,a,b) for(int i=(a);i<=(b);i++) #define per(i,a,b) for(int i=(a);i>=(b);i--) #define show1(a) cout<<#a<<" = "<<a<<endl #define show2(a,b) cout<<#a<<" = "<<a<<"; "<<#b<<" = "<<b<<endl using namespace std; const ll INF = 1LL<<60; const int inf = 1<<30; const int maxn = 1e6+5; const int M = 998244353; inline void fastio() {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);} ll qpow(ll a,ll b) {ll s=1;while(b){if(b&1)s=s*a%M;a=a*a%M;b>>=1;}return s;} int rev[maxn]; ll A[maxn],B[maxn],C[maxn],T4[maxn],val[30],p[30]; char s[maxn],t[maxn]; void trans(ll a[],int lim,int type) { rep(i,1,lim-1) if(i<rev[i]) swap(a[i],a[rev[i]]); for(int mid=1;mid<lim;mid<<=1){ ll wn = qpow(3,(M-1)/mid/2); if(type==-1) wn = qpow(wn,M-2); for(int R=mid<<1,j=0;j<lim;j+=R){ ll w = 1; for(int k=0;k<mid;k++,w=w*wn%M){ ll x=a[j+k],y=w*a[j+mid+k]%M; a[j+k] = (x+y)%M; a[j+mid+k] = (x-y+M)%M; } } } if(type==-1){ ll inv = qpow(lim,M-2); rep(i,0,lim) a[i] = a[i]*inv%M; } } void add(ll &x,ll y) { x += y; if(x>=M) x-=M; } bool check(int k) { rep(i,0,k) rep(j,i+1,k) if(val[i]==val[j]) return 0; return 1; } int main() { fastio();srand(time(NULL)); rep(i,0,25){ //val[i] = i; val[i] = rand()%M; while(!check(i)) add(val[i],1); } rep(i,0,25) cin>>p[i],p[i]=val[p[i]-1]; cin>>s>>t; int m = strlen(s),n = strlen(t); rep(i,0,m-1) s[i] -= 'a'; rep(i,0,n-1) t[i] -= 'a'; reverse(s,s+m); int lim = 1,l = 0; while(lim <= n+m) lim<<=1,l++; rep(i,1,lim-1) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(l-1)); rep(i,0,m-1) A[i] = (-2LL*val[s[i]]*val[s[i]]%M*p[s[i]]%M - 2LL*val[s[i]]*p[s[i]]%M*p[s[i]]%M)%M; rep(i,0,n-1) B[i] = val[t[i]]; trans(A,lim,1);trans(B,lim,1); rep(i,0,lim) add(C[i],A[i]*B[i]%M); memset(A,0,sizeof(A));memset(B,0,sizeof(B)); rep(i,0,m-1) A[i] = (1LL*val[s[i]]*val[s[i]]%M + 4LL*val[s[i]]*p[s[i]]%M + 1LL*p[s[i]]*p[s[i]]%M)%M; rep(i,0,n-1) B[i] = val[t[i]] * val[t[i]] % M; trans(A,lim,1);trans(B,lim,1); rep(i,0,lim) add(C[i],A[i]*B[i]%M); memset(A,0,sizeof(A));memset(B,0,sizeof(B)); rep(i,0,m-1) A[i] = (-2LL*val[s[i]] -2LL*p[s[i]])%M; rep(i,0,n-1) B[i] = val[t[i]] * val[t[i]] %M * val[t[i]] %M; trans(A,lim,1);trans(B,lim,1); rep(i,0,lim) add(C[i],A[i]*B[i]%M); trans(C,lim,-1); rep(i,0,n-1){ if(i==0) T4[i] = val[t[i]]*val[t[i]]%M*val[t[i]]%M*val[t[i]]%M; else T4[i] = (T4[i-1] + val[t[i]]*val[t[i]]%M*val[t[i]]%M*val[t[i]]%M)%M; } ll sps = 0; rep(i,0,m-1){ add(sps,val[s[i]] * val[s[i]] %M *p[s[i]]%M *p[s[i]]%M); } rep(i,m-1,n-1){ ll res = (T4[i] - (i==m-1?0:T4[i-m]) + C[i] + sps)%M; //show1(res); if(res==0) cout<<1; else cout<<0; } return 0; }