用户工具

站点工具


2020-2021:teams:alchemist:weekly_digest_11

这是本文档旧的修订版!


Week 11

比赛简记

Max.D.

专题

学习了一点计算几何

比赛

一场atcoder,一场cf global round

rating小涨

题目

暂无

Hardict

专题

比赛

cf div2

题目

暂无

MountVoom

专题

比赛

求求来点正常cf div1

遇见类似原题的题不要被轻易影响

题目

个人总结

陈铭煊 Max.D.

补题+学习

龙鹏宇 Hardict

补题+整理板子

肖思炀 MountVoom

该补点难题了

本周推荐

陈铭煊 Max.D.

来源:

标签:

思维题

题意:

给出一个$n(1\le n \le 10^6)$长的严格递增序列$h$,每一次找到满足所有$h_{i+1}-h_i\ge 2$的下标$i(1\le i< n)$,进行操作$h_i=h_i+1,h_{i+1}=h_{i+1}-1$,得到新的$h'$。然后再重复操作若干次,直到无法操作为止,求出最终的序列。

题解:

题意很简单,不过感觉真是想不到。

首先发现,每一次操作$1$的转移,顺序是没有什么关系的,或者说可以看做每一次随便挑选一对可变的$h_i,h_{i+1}$进行变换(这里变换是指让两者值最多相差$1$),然后再挑选一直到不能变为止。暂时不会证明,不过手动几个例子是很容易看出来的。

接下来我们安排一种变换轮次,每一次从左往右将新的$h_i$加入到轮次中来,到左边$1\sim i$序列无法变换,再加入下一个。对于每一个新加入的$h_i$,我们首先对$h_{i-1},h_i$进行一次变换,然后让序列$1\sim i-1$“消化”这个增加的$1$,接下来再变换$h_{i-1},h_i$…

很显然,考虑$1\sim i-1$中有唯一一对相邻相等元素$h_k,h_{k+1}$,消化的过程中,会消除了这对元素,产生了一对新的$h_{k+1},h_{k+2}$;考虑没有相邻相等元素,那么消化的过程中会在最左边产生一对新的相邻相等元素。

通过归纳,我们知道,因为一开始是没有相邻相等元素的,所以最后的相邻相等元素不会超过$1$对。

剩下的,就只用靠数学方法求解了。

评论:

赛场上其实想的很多,但没总结出这个最多一对的性质,其实打表已经比较明显了,以后还是注意好好观察。

龙鹏宇 Hardict

来源:

标签:

莫比乌斯反演

题意:

$G_u(a,b)=\frac{\varphi{ab}}{\varphi{a}\varphi{b}}$

求解$\sum_{i=1}^{n}\sum_{j=1}^{m}G_u(i,j)$

题解:

$gcd(a,b)=d,\varphi(ab)=\varphi(a)\varphi(b)\frac{d}{\varphi(d)}$

$G_u(a,b)=\frac{gcd(a,b)}{\varphi(gcd(a,b))}$

$ans=\sum_{d}\frac{d}{\varphi(d)}\sum_{a,b}[gcd(a,b)==d]$,可以看出是经典莫比乌斯反演问题

时间比较紧,需要线性预处理$1\sim n$逆元,进一步$\sum_{a=1}^n \sum_{b=1}^m [gcd(a,b)==d]=\sum_{i=1}^\frac{n}{d}\sum_{j=1}^\frac{m}{d}[gcd(i,j)==1]$,可以整除分块进一步优化

肖思炀 MountVoom

来源:

标签:

树形dp,二分图最大权匹配,树哈希

题意:

给定两棵同构的树,需要找到一个对应关系使得相同的标号尽可能多。

题解:

树形dp,dp[i][j]表示把第一棵树的i结点和第2棵树的j节点对应起来所需要的最小花费。

转移的时候对它们的子树做一个二分图最大权匹配即可,这样总的复杂度仍然是$O(n^3)$

评论:

cmx鸽鸽写的时候树哈希被卡了,需要注意

2020-2021/teams/alchemist/weekly_digest_11.1597998174.txt.gz · 最后更改: 2020/08/21 16:22 由 hardict