2020-2021:teams:farmer_john:莫比乌斯反演技巧总结
这是本文档旧的修订版!
莫比乌斯反演技巧总结
常用狄利克雷卷积
$\epsilon = \mu * 1$,证明:二项式定理$(1 - 1)^2 = 0$。
$\operatorname{id} = \varphi * 1$,证明:真分数约分。
$\varphi= \mu * \operatorname{id}$,证明:上面式子左右卷$\mu$。
常用套路
求 $$\sum_{i=1}^{n}\sum_{j=1}^{m}\gcd(i,j)$$ 先枚举$d = \gcd(i,j)$,再套用$\epsilon = \mu * 1$ $$=\sum_{d=1}^{n}d\sum_{i=1}^{\left\lfloor \frac{n}{d} \right\rfloor}\sum_{j=1}^{\left\lfloor \frac{m}{d} \right\rfloor}[\gcd(i,j)=1]$$ $$=\sum_{d=1}^{n}d\sum_{i=1}^{\left\lfloor \frac{n}{d} \right\rfloor}\sum_{j=1}^{\left\lfloor \frac{m}{d} \right\rfloor}\sum_{p|\gcd(i,j)}\mu(p)$$ 再枚举$p$ $$=\sum_{d=1}^{n}d\sum_{p=1}^{\left\lfloor \frac{n}{d} \right\rfloor}\mu(p)\sum_{i=1}^{\left\lfloor \frac{n}{dp} \right\rfloor}\sum_{j=1}^{\left\lfloor \frac{m}{dp} \right\rfloor}1$$ $$=\sum_{d=1}^{n}d\sum_{p=1}^{\left\lfloor \frac{n}{d} \right\rfloor}\mu(p)\frac{\left\lfloor \frac{n}{dp} \right\rfloor(\left\lfloor \frac{n}{dp} \right\rfloor + 1)\left\lfloor \frac{m}{dp} \right\rfloor(\left\lfloor \frac{m}{dp} \right\rfloor + 1)}{4}$$ 设$T=dp$,枚举$T$ $$=\sum_{T=1}^{n} \frac{\left\lfloor \frac{n}{T} \right\rfloor(\left\lfloor \frac{n}{T} \right\rfloor + 1)\left\lfloor \frac{m}{T} \right\rfloor(\left\lfloor \frac{m}{T} \right\rfloor + 1)}{4}\sum_{d|T}d\mu(\frac{T}{d})$$ 套用$\varphi= \mu * \operatorname{id}$ $$=\sum_{T=1}^{n} \frac{\left\lfloor \frac{n}{T} \right\rfloor(\left\lfloor \frac{n}{T} \right\rfloor + 1)\left\lfloor \frac{m}{T} \right\rfloor(\left\lfloor \frac{m}{T} \right\rfloor + 1)}{4}\varphi(T)$$ 求出欧拉函数前缀和,直接整除分块即可。
2020-2021/teams/farmer_john/莫比乌斯反演技巧总结.1597392650.txt.gz · 最后更改: 2020/08/14 16:10 由 jjleo