solved by 2sozx
给定一个质数 $p$ 问是否存在一个排列使得每一位满足 $a_{i+1}=2a_i(mod p)$ 或 $a_{i+1}=3a_i(mod p)$ 其中一个条件。
令 $a_1=1$ ,之后能用 $2$ 就用 $2$ ,否则就用一个 $3$ ,之后再用 $2$ 。完全不会证明。
upsolved by
upsolved by
upsolved by
upsolved by
upsolved by
upsolved by
upsolved by
upsolved by
upsolved by
0min:开局分题
30min:CSK ZYF冲E,MJX看A
38min:ZYF AC E,MJX 冲A
49min:MJX AC A
50min~180min:集体自闭ing
180min:D rejudge 了,重测了,发现挺可做的集体搓炉石
234min:巨大讨论后 ZYF AC D,CSK看J
245min:CSK AC J
286min:CSK 猜结论 WA1 后AC