这是本文档旧的修订版!
upsolved by 2sozx
给定一个开始全白的二维平面,每次操作选择一个矩形将其涂黑,矩形下面紧贴 $x$ 轴,问每次操作过后黑色区域的周长为多少。操作次数 $n \le 2 \times 10^5$
由于矩形紧贴 $x$ 轴,矩形上下两条边边长可以用线段覆盖来维护,现在考虑左右两条边的边长。易知操作是一个区间取 $\max$ ,每次的和为 $\sum_{i = 1}^{n - 1}|a_i - a_{i + 1}|$ ,维护区间 $a_i,a_{i + 1}$ 其中一个是最小值的个数即可。
upsolved by
solved by 2sozx
upsolved by
upsolved by
upsolved by
upsolved by
upsolved by
upsolved by
upsolved by
before:准备视奸全场结果后排没位置了。书接上文:CSK恰了意面,身体不适
0min:开始分题,ZYF冲1010
2min:ZYF AC,MJX冲1003
14min:MJX AC,CSK冲1007
16min:CSK AC,拿了暂时的 rank1,MJX看1011
41min:MJX PE二发后AC,ZYF冲1002
57min:ZYF AC,ZYF,CSK看1005,MJX看1012,自闭开始
240min:换题讨论,顺了起来,MJX 冲1005,ZYF冲1006
263min:MJX AC
264min:ZYF AC
after end:MJX ban掉ZYF1012正解,CSK ban掉ZYF正解,结论:要换题看