用户工具

站点工具


2020-2021:teams:farmer_john:week_14

这是本文档旧的修订版!


团队训练

比赛时间 比赛名称 当场过题数 至今过题数 总题数 排名
2020-08-01 2020牛客暑期多校第七场 4 6 10 66/1090
2020-08-03 2020牛客暑期多校第八场 4 6 11 32/685
2020-08-06 2020-2021 BUAA ICPC Team Supplementary Training 02 6 8 10 6/19

本周推荐

2sozx

Codeforces 804D Expected diameter of a tree

  • 分类:树形$DP$ ,根号分治
  • 题意:给定一片森林,$q$ 此询问,每次给出两个点 $u,v$ ,如果 $u,v$ 在一棵树内输出 $-1$ ,否则在这两棵树任取一点临时建立一条边,求连边后的直径的期望。$n,q\le 10^5$
  • 题解:首先我们可以预处理出每个点在哪棵树中,其次预处理出每个点 $u$ 到这棵树叶子的最大值 $mx[u]$ ,这个可以用树形$DP$ 处理,将每棵树按照这个最大值进行排序,最后在处理出每棵树的直径长度 $len$ 。询问的时候枚举点数少的树,在另一棵树中寻找另一个点。将两棵树连接 $u,v$ 后的直径有两种情况:$mx[u]+mx[v]+1$ 和 $\max(len[u],len[v])$。第二种情况是一个定值,因此对于每一个 $v$ 我们可以二分出满足第一种情况的 $u$ 的个数,剩余的即为第二种情况。最后答案要用$map$ 记录下来避免重复询问。复杂度是神奇的 $O(n\sqrt{n}\log{n})$
  • comment:根号分治太神奇了

Bazoka13

Codeforces 1083E The Fair Nut and Rectangles

  • 分类:$dp$
  • 题意:给定$n$个带有权值的第一象限的矩形,并且每个矩形有两条边与坐标轴重合,选择一个子集,使得子集内的矩形面积并减去权值和的差最大
  • 题解:按照横坐标排序后,可以写出一个$dp$转移式,$dp_i=x_i*y_i-a_i+\max (-x_j*y_i+dp_j)$,而$max$后面的式子可以通过凸包来维护,为了熟悉板子的使用换了插入直线和查询单点最大值的做法,需要注意由于可能存在负数,需要插入$(0,0)$
  • comment:$dp$的转移式的推导比较巧妙,之后就变成裸题了,(为什么会放在$1E$啊草)

JJLeo

2020牛客多校第七场I Valuable Forests

  • 分类:prufer序列,组合计数。
  • 题意:$n$个不同的点的生成森林中,每个点权值为该点的度数和平方,问所有生成森林的所有点的权值和是多少,$T$组数据。$(n,T \le 5000)$
  • 题解:每个点都是对称的,因此只需固定一个点最后乘以$n$即可。首先设$h_i$为$i$个不同的点的生成森林数量,利用purfer序列可以得到$O(n^2)$递推式$$h_i=\sum_{j=0}^{i-1}\binom{i-1}{j}j^{(j-2)}$$接下来设$g_i$为我们所考虑的点所在的树大小为$i$时所有情况该点贡献的权值和,考虑将该点固定为根,然后枚举该点的度数,利用prufer序列算出方案数,再乘以度数的平方和,得到$O(n^2)$递推式$$g_i=\sum_{j=1}^{i-1}\binom{i-2}{j-1}{(i-1)}^{i-2-(j-1)}$$最后设$f_i$为节点数为$i$时一个固定节点对答案的贡献,考虑枚举该点所在树的大小,则剩下的节点组成森林,可以得到$O(n^2)$递推式$$f_i=\sum_{j=2}^{j=i}\binom{i-1}{j-1}g_jh_{i-j}$$对于每个询问,我们只需$O(1)$输出$nf_n$即可。
  • comment:对prufer序列的高级应用,十分巧妙。

题目

个人训练

2sozx

比赛

  • 摸了

题目

  • 每日亿题

Bazoka13

比赛

意外情况,摸了

题目

JJLeo

比赛

题目

2020-2021/teams/farmer_john/week_14.1596793723.txt.gz · 最后更改: 2020/08/07 17:48 由 jjleo