用户工具

站点工具


2020-2021:teams:i_dont_know_png:potassium:sieve

这是本文档旧的修订版!


筛法

埃氏筛

列出所有数字,从小到大枚举,将枚举数的所有倍数筛掉。复杂度$O(n\log\log n)$,证明见这里

参考实现

参考实现

void sieve(int n){
	int i,j;
	isnp[0]=isnp[1]=1;
	for(i=2;i<=n;i++){
		if(isnp[i])continue;
		pri[cnt++]=i;
		for(j=i;j<=n;j+=i)isnp[j]=1;
	}
}


欧拉筛

埃氏筛会将一个合数被其所有质因数都筛一遍,很浪费时间。

考虑优化,让每个合数都只被最大的非本身的因数(和最小质因数共同)筛到一遍。

故首先枚举所有数 $i$ ,再枚举所有 $i$ 的素倍数 $t=pri_j\times i$ ,( $i$ 与 $pri[j]$ 共同)将 $t$ 筛掉,且当 $pri_j\mid i$ 时退出枚举。此举的正确性在于:

  • $i$ 的最小质因数为 $pri[j]$ ;
  • $\forall k>j, i\times pri[k]$ 会被比 $i$ 更大的 $\frac{i}{pri[j]}\times pri[k]$ 与 $pri[j]$ 共同筛掉。

因此,欧拉筛的每个数都只被筛了一次,复杂度 $O(n)$ 。

模板题

参考实现

参考实现

void sieve(int n){
	int i,j;
	isnp[0]=isnp[1]=1;
	for(i=2;i<=n;i++){
		if(!isnp[i])pri[cnt++]=i;
		for(j=0;j<cnt;j++){
			if(pri[j]*i>n)break;
			isnp[pri[j]*i]=1;
			if(i%pri[j]==0)break;
		}
	}
}


除了筛素数,欧拉筛还可以线性地筛一些积性函数

欧拉函数

欧拉函数 $\varphi(n)$ 表示小于等于 $n$ 且 $\gcd(i,n)=1$ 的 $i$ 个数。

欧拉函数是积性的,也就是对任意 $n,m$ 满足 $(m,n)=1$ ,有 $\varphi(n\times m)=\varphi(n)\times \varphi(m)$ 。有一个不错的证法

处理边界情况:

  • 当 $n=p$ 的时候, $\varphi(n)=p-1$ ;
  • 当 $n=p^k$ 的时候, $\varphi(n)=p^{k-1}(p-1)$ ;

因为欧拉函数是积性的,如果将 $n$ 质因数分解为 $n=\prod_i p_i^{k_i}$ ,可以得到:

$$ \begin{aligned} \varphi(n)&=\prod_i p_i^{k_i-1}(p_i-1)\\ &=n\prod_i\frac{p_i-1}{p_i} \end{aligned} $$

参考实现

参考实现

void sieve(int n){
	int i,j;
	isnp[0]=isnp[1]=1;
	for(i=2;i<=n;i++){
		if(!isnp[i])pri[cnt++]=i,phi[i]=i-1;
		for(j=0;j<cnt;j++){
			if(pri[j]*i>n)break;
			isnp[pri[j]*i]=1;
			if(i%pri[j]==0){
				phi[pri[j]*i]=phi[i]*pri[j];
				break;
			}else{
				phi[pri[j]*i]=phi[i]*phi[pri[j]];
			}
		}
	}
}


莫比乌斯函数

这里讲过了,不再赘述。

杜教筛

min_25 筛

2020-2021/teams/i_dont_know_png/potassium/sieve.1590340740.txt.gz · 最后更改: 2020/05/25 01:19 由 potassium