用户工具

站点工具


2020-2021:teams:i_dont_know_png:potassium:sieve

这是本文档旧的修订版!


筛法

埃氏筛

列出所有数字,从小到大枚举,将枚举数的所有倍数筛掉。复杂度$O(n\log\log n)$,证明见这里

参考实现

参考实现

void sieve(int n){
	int i,j;
	isnp[0]=isnp[1]=1;
	for(i=2;i<=n;i++){
		if(isnp[i])continue;
		pri[cnt++]=i;
		for(j=i;j<=n;j+=i)isnp[j]=1;
	}
}


欧拉筛(线性筛)

埃氏筛会将一个合数被其所有质因数都筛一遍,很浪费时间。

考虑优化,让每个合数都只被最大的非本身的因数(和最小质因数共同)筛到一遍。

故首先枚举所有数 $i$ ,再枚举所有 $i$ 的素倍数 $t=pri_j\times i$ ,( $i$ 与 $pri[j]$ 共同)将 $t$ 筛掉,且当 $pri_j\mid i$ 时退出枚举。此举的正确性在于:

  • $i$ 的最小质因数为 $pri[j]$ ;
  • $\forall k>j, i\times pri[k]$ 会被比 $i$ 更大的 $\frac{i}{pri[j]}\times pri[k]$ 与 $pri[j]$ 共同筛掉。

因此,欧拉筛的每个数都只被筛了一次,复杂度 $O(n)$ 。

模板题

参考实现

参考实现

void sieve(int n){
	int i,j;
	isnp[0]=isnp[1]=1;
	for(i=2;i<=n;i++){
		if(!isnp[i])pri[cnt++]=i;
		for(j=0;j<cnt;j++){
			if(pri[j]*i>n)break;
			isnp[pri[j]*i]=1;
			if(i%pri[j]==0)break;
		}
	}
}


除了筛素数,欧拉筛还可以线性地筛一些积性函数

欧拉函数

欧拉函数 $\varphi(n)$ 表示小于等于 $n$ 且 $\gcd(i,n)=1$ 的 $i$ 个数。

欧拉函数是积性的,也就是对任意 $n,m$ 满足 $(m,n)=1$ ,有 $\varphi(n\times m)=\varphi(n)\times \varphi(m)$ 。有一个不错的证法

处理边界情况:

  • 当 $n=1$ 的时候,规定 $\varphi(1)=1$ ;
  • 当 $n=p$ 的时候, $\varphi(n)=p-1$ ;
  • 当 $n=p^k$ 的时候, $\varphi(n)=p^{k-1}(p-1)$ ;

因为欧拉函数是积性的,如果将 $n$ 质因数分解为 $n=\prod_i p_i^{k_i}$ ,可以得到:

$$ \begin{aligned} \varphi(n)&=\prod_i p_i^{k_i-1}(p_i-1)\\ &=n\prod_i\frac{p_i-1}{p_i} \end{aligned} $$

参考实现

参考实现

void sieve(int n){
	int i,j;
	isnp[0]=isnp[1]=1;
	phi[1]=1;
	for(i=2;i<=n;i++){
		if(!isnp[i])pri[cnt++]=i,phi[i]=i-1;
		for(j=0;j<cnt;j++){
			if(pri[j]*i>n)break;
			isnp[pri[j]*i]=1;
			if(i%pri[j]==0){
				phi[pri[j]*i]=phi[i]*pri[j];
				break;
			}else{
				phi[pri[j]*i]=phi[i]*phi[pri[j]];
			}
		}
	}
}


莫比乌斯函数

这里讲过了,不再赘述。

杜教筛

杜教筛想要解决的问题是,对于数论函数 $f$ ,要在小于线性的复杂度求出前缀和 $S_f(n)=\sum_{i=1}^{n}f(i)$ 。

可以应用杜教筛的前提是,存在一个易求前缀和的数论函数 $g$ ,使得狄利克雷卷积 $f\ast g$ 易求前缀和。当两个函数都可以 $O(1)$ 地求出在某点的前缀和时,通过预处理一定数量的前缀和,求出 $f$ 在某处的前缀和复杂度是可以达到 $O(n^{\tfrac23})$ 的。

具体推导过程如下:(设 $f,g,h$ 的前缀和函数分别为 $s_f,s_g,s_h$ )

$$ \begin{aligned} s_h(n)=\sum_{i=1}^{n}h(i)&=\sum_{d\mid i}f(\dfrac id)g(d)\\ &=\sum_{d=1}^{n}\sum_{t=1}^{\lfloor\frac{n}{d}\rfloor}g(d)f(t)\\ &=\sum_{d=1}^{n}g(d)s_f(\lfloor\frac{n}{d}\rfloor)\\ &=g(1)s_f(n)+\sum_{d=2}^{n}g(d)s_f(\lfloor\frac{n}{d}\rfloor)\\ \\ s_f(n)&=\dfrac{s_h(n)-\sum_{d=2}^{n}g(d)s_f(\lfloor\frac{n}{d}\rfloor)}{g(1)}\\ \end{aligned} $$

等式右边数论分块处理,递归计算 $s_f$ 即可。

复杂度证明

设 $A=\{1,2,3,\ldots,\lfloor\sqrt n\rfloor\},B=\{\lfloor\frac n2\rfloor,\ldots,\lfloor\frac{n}{\lfloor\sqrt n\rfloor}\rfloor\}$ ,设 $U(n)=A\bigcup B$ ,易看出 $|U(n)|$ 是 $O(\sqrt n)$ 级别的。同时,对于任意 $m\in U(n)$ ,有 $U(m)\subseteq U(n)$ (证明:设 $m=\lfloor\frac na\rfloor$ ,则任意 $\lfloor\frac mb\rfloor=\lfloor\frac m{ab}\rfloor \in U(n)$)。

设计算出 $s_f(n)$ 复杂度为 $T(n)$ ,则根据上述结论,为计算出 $s_f(n)$ ,只需要在记忆化过程中总共计算出 $s_f(i),i\in U(n)$ 即可,故考虑枚举次数,有等式:

$$ \begin{aligned} T(n)&=O(\sum_{i=1}^{\lfloor\sqrt n\rfloor}(\sqrt i+\sqrt\frac{n}{i}))\\ &=O(\int_{1}^{\lfloor\sqrt n\rfloor}(\sqrt x+\sqrt\frac{n}{x}) \text{ d}x)\\ &=O((x^{\frac 32}+\sqrt n\sqrt x) \mid_{1}^{\lfloor\sqrt n\rfloor})\\ &=O(x^{\frac34}) \end{aligned} $$

设线性预处理了前 $b>\sqrt n$ 项,则复杂度为:

$$ \begin{aligned} T(n)&=O(\sum_{i=1}^{\lfloor\sqrt{\frac nb}\rfloor}\sqrt\frac{n}{i}+b)\\ &=O(\int_{1}^{\lfloor\sqrt{\frac nb}\rfloor}\sqrt\frac{n}{x}\text{ d}x+b)\\ &=O(\frac n{\sqrt b}+b) \end{aligned} $$

取 $b=n^{\frac 23}$ 取得最优复杂度 $O(n^{\frac 23})$ 。

实例

Luogu P4213 【模板】杜教筛(Sum)51nod 124451nod 1239

三个类似的题,计算 $[1,2^{31}-1]$ 范围内 $\varphi,\mu$ 的前缀和。很显然有 $\varphi\ast 1=\text{id},\mu\ast 1=\epsilon$ ,直接筛即可。

min_25 筛

2020-2021/teams/i_dont_know_png/potassium/sieve.1590380239.txt.gz · 最后更改: 2020/05/25 12:17 由 potassium