这是本文档旧的修订版!
date: 2020-07-18 12:00~17:00
2020-2021 BUAA ICPC Team Supplementary Training 01
2015-2016 Petrozavodsk Winter Training Camp, Saratov SU Contest
题目大意:
题解:
题目大意:
题解:
题目大意:
题解:
题目大意:
现有 $n$ 个质量均匀分布的棒子,头在 (0, 0) 点挂着,尾在 (L, 0) 点挂着,然后让整条链自然下垂,求每个点自然下垂稳定之后的位置。
题解:
不会奇奇怪怪的东西,我只知道自然下垂时,必然总体的重力势能是最小的。
记长度单位为米,棒子每米的质量为 $m_0$,重力势能为 $g$。
记 $\alpha_i \in [0, \pi]$ 为第 $i$ 个棒子和重力方向的夹角。写出来每个点的坐标,写一下重力势能,限制一下最后一个点的坐标为 $(L, 0)$,用拉格朗日乘数法,我们需要最小化: $$ P\left(\vec{\alpha}, \lambda'_1, \lambda'_2\right) = \left(\sum_{i=1}^n{-m_0 l_i g \left(\frac{1}{2} l_i \cos{\alpha_i} + \sum_{j<i}{l_j \cos{\alpha_j}} \right)}\right) + \lambda'_1 \left(\left(\sum_{i=1}^n{l_i \sin{\alpha_i}}\right) - L\right) + \lambda'_2 \left(\sum_{i=1}^n{l_i \cos{\alpha_i}}\right) $$ 相当于最小化: $$ F\left(\vec{\alpha}, \lambda_1, \lambda_2\right) = \left(\sum_{i=1}^n{-l_i \left(\frac{1}{2} l_i \cos{\alpha_i} + \sum_{j<i}{l_j \cos{\alpha_j}} \right)}\right) + \lambda_1 \left(\left(\sum_{i=1}^n{l_i \sin{\alpha_i}}\right) - L\right) + \lambda_2 \left(\sum_{i=1}^n{l_i \cos{\alpha_i}}\right) $$ 偏导: $$ \begin{array}{rcl} \frac{\partial F}{\partial \alpha_i} &=& \frac{1}{2} l_i^2 \sin{\alpha_i} + \sum_{j > i}{l_j l_i \sin{\alpha_i}} + \lambda_1 l_i \cos{\alpha_i} - \lambda_2 l_i \sin{\alpha_i} \\ &=& l_i \sin{\alpha_i} \left(\frac{1}{2} l_i + \sum_{j > i}{l_j}\right) + \lambda_1 l_i \cos{\alpha_i} - \lambda_2 l_i \sin{\alpha_i} \end{array} $$ $$ \frac{\partial F}{\partial \lambda_1} = \left(\sum_{i=1}^n{l_i \sin{\alpha_i}}\right) - L \\ \frac{\partial F}{\partial \lambda_2} = \sum_{i=1}^n{l_i \cos{\alpha_i}} $$
目标是让偏导都为 $0$,但容易想到实际上偏导均为 $0$ 应该是有两个解。另外一个是取最大值,那种情况下必然 $\alpha_1 > \frac{\pi}{2}$。所以我们限制一下 $\alpha_1 \in [0, \frac{\pi}{2}]$。
考虑一下 $\alpha_{i} > \alpha_{i+1}$,容易发现如果我们将第 $i$ 个棒子的起点和第 $i+1$ 个棒子的终点用线段连起来,会发现两个棒子都在这个线段的上方,但是我们如果让两个棒子根据这个线段对称一下,就能得到重力势能最小的解。因此在最小化重力势能的情况下 $\alpha_{i} \le \alpha_{i+1}$。
记 $x_i$ 为: $$ x_i = \frac{1}{2} l_i + \sum_{j > i}{l_j} $$ $x_i$ 的差分是两个棒子长度和的一半,所以 $x_i$ 单调递减。
我们先令 $\frac{\partial F}{\partial \alpha_i} = 0$,容易发现只要前两个角度不同,就可以直接解出 $\lambda_1$ 和 $\lambda_2$。
假设 $\alpha_1 < \alpha_2$ (即 $\alpha_1 \ne \alpha_2$),有: $$ \lambda_1 = \frac{\left|\begin{array}{ccc} -x_1 \sin{\alpha_1} & -\sin{\alpha_1} \\ -x_2 \sin{\alpha_2} & -\sin{\alpha_2} \\ \end{array}\right|} {\left|\begin{array}{ccc} \cos{\alpha_1} & -\sin{\alpha_1} \\ \cos{\alpha_2} & -\sin{\alpha_2} \\ \end{array}\right|} = \frac{\sin{\alpha_1}\sin{\alpha_2} \left(x_1 - x_2\right)}{\sin{(\alpha_1 - \alpha_2)}} $$ $$ \lambda_2 = \frac{\left|\begin{array}{ccc} \cos{\alpha_1} & -x_1 \sin{\alpha_1} \\ \cos{\alpha_2} & -x_2 \sin{\alpha_2} \\ \end{array}\right|} {\left|\begin{array}{ccc} \cos{\alpha_1} & -\sin{\alpha_1} \\ \cos{\alpha_2} & -\sin{\alpha_2} \\ \end{array}\right|} = \frac{x_1 \sin{\alpha_1} \cos{\alpha_2} - x_2 \cos{\alpha_1} \sin{\alpha_2}}{\sin{(\alpha_1 - \alpha_2)}} $$
利用 $\frac{\partial F}{\partial \alpha_i} = 0$,可以解得 $\alpha_i$ 是以 $-\lambda_1$ 为对边、以 $x_i - \lambda_2$ 为临边的直角三角形中的角,可以用 atan2 来解。因为 $x_i$ 是单调递减的,所以这样直接解出来的角度也是单调递增的。
到现在我已经分析的是头昏眼花,所以接下来的只能猜一下了。想象一下,如果 $\alpha_1$ 固定了,那么随着 $\alpha_2$ 的变化,我们通过上面的方式计算一下最后一个点的坐标,这个点划过的轨迹必然是一个连续、光滑的曲线,我们需要一个可以三分的目标函数,这个目标函数越小,就表明最终一个点越接近 $(L, 0)$。
最后就只能各种距离函数都试一下了 XwX,不过确实轨迹上的曲率很难确定,而且轨迹是光滑的,因此像切比雪夫距离、曼哈顿距离之类的,在确定的距离下图形不是光滑的距离函数会比较适合。
最后发现三分第一个角套三分第二个角,最小化最终一个点到 $(L, 0)$ 的切比雪夫距离能获得正确的解,晚安。
题目大意:
题解:
题目大意:
题解:
题目大意:
题解:
题目大意:
题解:
题目大意:
题解:
题目大意:
题解:
题目大意:
题解: