我们设 $f(a,b,c,n)=\sum_{i=0}^{n}\lfloor {\frac {ai+b} {c}} \rfloor$
其中 $a,b,c,n$ 为常数,我们需要一个 $O(logn)$ 的算法。
如果 $a≥c$ 或者 $b≥c$ ,我们可以将 $a,b$ 对 $c$ 取模来化简问题:
$f(a,b,c,n)=\sum_{i=0}^{n}\lfloor {\frac {ai+b} {c}} \rfloor$
$=\sum_{i=0}^{n}\lfloor {\frac {(\lfloor {\frac a c} \rfloor c+a\ mod\ c)i+(\lfloor {\frac b c} \rfloor c+b\ mod\ c)} {c}} \rfloor$
$={\frac {n(n+1)} {2}}\lfloor {\frac a c} \rfloor+(n+1)\lfloor {\frac b c} \rfloor+\sum_{i=0}^{n}\lfloor {\frac {(a\ mod\ c)i+(b\ mod\ c)} {c}} \rfloor$
$={\frac {n(n+1)} {2}}\lfloor {\frac a c} \rfloor+(n+1)\lfloor {\frac b c} \rfloor+f(a\ mod\ c,b\ mod\ c,c,n)$
这样我们就将前两个参数控制到一定比第三个参数小的形式了。
我们有 $\sum_{i=0}^{n}\lfloor {\frac {ai+b} {c}} \rfloor=\sum_{i=0}^{n}\sum_{j=0}^{\lfloor {\frac {ai+b} {c}} \rfloor-1}1$
然后我们交换和号:
$\sum_{j=0}^{\lfloor {\frac {an+b} {c}} \rfloor-1}\sum_{i=0}^{n}[j<\lfloor {\frac {ai+b} {c}} \rfloor]$
对于里面的式子,我们可以变换一下:
$j<\lfloor {\frac {ai+b} {c}} \rfloor \Leftrightarrow j+1≤ \lfloor {\frac {ai+b} {c}} \rfloor \Leftrightarrow j+1≤{\frac {ai+b} {c}} \Leftrightarrow jc+c≤ai+b \Leftrightarrow jc+c-b-1<ai \Leftrightarrow \lfloor {\frac {jc+c-b-1} {a}} \rfloor <i$
这样我们设 $m= \lfloor {\frac {an+b} {c}} \rfloor$
原式变为: $f(a,b,c,n)=\sum_{j=0}^{m-1}\sum_{i=0}^{n}[i>\lfloor {\frac {jc+c-b-1} {a}} \rfloor]=\sum_{j=0}^{m-1}(n-\lfloor {\frac {jc+c-b-1} {a}} \rfloor)=nm-f(c,c-b-1,a,m-1)$ 。然后第一个参数又比第三个大了,就一直取模这样,类似于求最大公约数。
先设 $f(a,b,c,n)=\sum_{i=0}^{n}\lfloor {\frac {ai+b} {c}} \rfloor$
1.求 $g(a,b,c,n)=\sum_{i=0}^{n}{\lfloor {\frac {ai+b} c} \rfloor}^{2}$ 和 $h(a,b,c,n)=\sum_{i=0}^{n}i \lfloor {\frac {ai+b} {c}} \rfloor$
当 $a==0$ 时, $g(a,b,c,n)=(n+1){\lfloor {\frac b c} \rfloor}^{2}$ , ${\frac {n(n+1)} {2}}\lfloor {\frac b c} \rfloor$
当 $a≥c$ 或 $b≥c$ 时, $g(a,b,c,n)=\sum_{i=0}^{n}{( \lfloor {\frac {i(a\ mod\ c)+b\ mod\ c} {c}} \rfloor +i \lfloor {\frac a c} \rfloor + \lfloor {\frac b c} \rfloor)}^{2}$
$=\sum_{i=0}^{n}{\lfloor {\frac {i(a\ mod\ c)+b\ mod\ c} {c}} \rfloor}^{2}+2(i \lfloor {\frac a c} \rfloor + \lfloor {\frac b c} \rfloor)\lfloor {\frac {i(a\ mod\ c)+b\ mod\ c} {c}} \rfloor +{(i \lfloor {\frac a c} \rfloor + \lfloor {\frac b c} \rfloor)}^{2}$
$=g(a\ mod\ c,b\ mod\ c,c,n)+2 \lfloor {\frac a c} \rfloor h(a\ mod\ c,b\ mod\ c,c,n)+2 \lfloor {\frac b c} \rfloor f(a\ mod\ c,b\ mod\ c,c,n)+\sum_{i=0}^{n}{\lfloor {\frac a c} \rfloor}^{2} i^{2}+2 \lfloor {\frac a c} \rfloor \lfloor {\frac b c} \rfloor i+{\lfloor {\frac b c} \rfloor}^{2}$
$=g(a\ mod\ c,b\ mod\ c,c,n)+2 \lfloor {\frac a c} \rfloor h(a\ mod\ c,b\ mod\ c,c,n)+2 \lfloor {\frac b c} \rfloor f(a\ mod\ c,b\ mod\ c,c,n)$
$+{\frac {n(n+1)(2n+1)} 6}{\lfloor {\frac a c} \rfloor}^{2}+n(n+1)\lfloor {\frac a c} \rfloor \lfloor {\frac b c} \rfloor+(n+1){\lfloor {\frac b c} \rfloor}^{2}$
$h(a,b,c,n)=\sum_{i=0}^{n}i\lfloor {\frac {i(a\ mod\ c)+b\ mod\ c} c} \rfloor+i(i\lfloor {\frac a c} \rfloor +\lfloor {\frac b c} \rfloor)$
$=h(a\ mod\ c,b\ mod\ c,c,n)+{\frac {n(n+1)(2n+1)} 6}\lfloor {\frac a c} \rfloor+{\frac {n(n+1)} 2}\lfloor {\frac b c} \rfloor$
当 $a<c$ 且 $b<c$ 时,仍设 $m=\lfloor {\frac {an+b} c} \rfloor$
$g(a,b,c,n)=2\sum_{i=0}^{n}\sum_{j=1}^{\lfloor {\frac {ai+b} c} \rfloor}j-\sum_{i=0}^{n}\lfloor {\frac {ai+b} c} \rfloor$
$=-f(a,b,c,n)+2\sum_{i=0}^{n}\sum_{j=1}^{m}j[j≤{\lfloor {\frac {ai+b} c} \rfloor}]$
$=-f(a,b,c,n)+2\sum_{i=0}^{n}\sum_{j=1}^{m-1}(j+1)[(j+1)c<ai+b+1]$
$=-f(a,b,c,n)+2\sum_{j=0}^{m-1}(j+1)\sum_{i=0}^{n}[i>{\lfloor {\frac {jc+c-b-1} {a}} \rfloor}]$
$=-f(a,b,c,n)+2\sum_{j=0}^{m-1}(j+1)(n-{\lfloor {\frac {jc+c-b-1} {a}} \rfloor})$
$=nm(m+1)-f(a,b,c,n)-2h(c,-b-1,a,m)$
$h(a,b,c,n)=\sum_{i=0}^{n}i\sum_{j=1}^{m}[j≤\lfloor {\frac {ai+b} {c}} \rfloor]$
$=\sum_{i=0}^{n}i\sum_{j=0}^{m-1}[(j+1)c<ai+b+1]$
$=\sum_{j=0}^{m-1}\sum_{i=0}^{n}i[i>{\frac {jc+c-b-1} {a}}]$
$=\sum_{j=0}^{m-1}({\frac {n(n+1)} {2}}-\sum_{i=0}^{n}i[i≤{\lfloor {\frac {jc+c-b-1} {a}} \rfloor}])$
$=\sum_{j=0}^{m-1}({\frac {n(n+1)} {2}}-{\frac {{\lfloor {\frac {jc+c-b-1} {a}} \rfloor}(\lfloor {\frac {jc+c-b-1} {a}} \rfloor+1)} {2}})$
$={\frac {\sum_{j=0}^{m-1}n(n+1)-\sum_{j=0}^{m-1}{\lfloor {\frac {jc+c-b-1} {a}} \rfloor}^{2}-\sum_{j=0}^{m-1}{\lfloor {\frac {jc+c-b-1} {a}} \rfloor}} {2}}$
$={\frac 1 2}[mn(n+1)-g(c,c-b-1,a,m-1)-f(c,c-b-1,a,m-1)]$
注意负数那里会导致计算错误,比如 ${\frac {-1} 2}={\frac {1} 2}=0$
所以在实际计算中,要规避掉参数为负的情况,这个具体情况具体分析。
$ps$ :这里一起计算是因为,单独记忆化 $t$ 了…