用户工具

站点工具


2020-2021:teams:legal_string:jxm2001:最小斯坦纳树

这是本文档旧的修订版!


最小斯坦纳树

算法简介

一种用于计算只含图中部分关键节点的最小生成树的算法。

算法实现

考虑状压 $\text{dp}$,第一维表示当前包含节点的点集,第二维表示树根节点。考虑两步转移

$$ \text{dp}(s,u)\gets \min_{k\subset s}(\text{dp}(k,u)+\text{dp}(s\oplus k,u)) $$

$$ \text{dp}(s,u)\gets \min(\text{dp}(s,u),\text{dp}(s,v)+w) $$

时间复杂度据说是 $O(2^kn^3+3^kn)$。

算法模板

$\text{spfa}$ 版本

namespace SteinerTree{
	int n,k,dp[1<<MAXK][MAXN];
	bool inque[MAXN];
	void spfa(int S){
		queue<int>q;
		_rep(i,1,n){
			if(dp[S][i]!=Inf){
				q.push(i);
				inque[i]=true;
			}
		}
		while(!q.empty()){
			int u=q.front();q.pop();
			inque[u]=false;
			for(int i=head[u];i;i=edge[i].next){
				int v=edge[i].to;
				if(dp[S][u]+edge[i].w<dp[S][v]){
					dp[S][v]=dp[S][u]+edge[i].w;
					if(!inque[v]){
						q.push(v);
						inque[v]=true;
					}
				}
			}
		}
	}
	int build(int Node_cnt,int Keynode_cnt,int *key_node){
		n=Node_cnt,k=Keynode_cnt;
		_for(i,1,1<<k)_rep(j,1,n)
		dp[i][j]=Inf;
		_for(i,0,k)
		dp[1<<i][key_node[i]]=0;
		_for(i,0,1<<k){
			_rep(j,1,n){
				for(int k=i&(i-1);k;k=(k-1)&i)
				dp[i][j]=min(dp[i][j],dp[k][j]+dp[i^k][j]);
			}
			spfa(i);
		}
		int ans=Inf;
		_rep(i,1,n)
		ans=min(ans,dp[(1<<k)-1][i]);
		return ans;
	}
}

$\text{dijkstra}$ 版本

namespace SteinerTree{
	int n,k,dp[1<<MAXK][MAXN];
	bool vis[MAXN];
	void dijkstra(int S){
		priority_queue<pair<int,int>,vector<pair<int,int> >,greater<pair<int,int> > >q;
		_rep(i,1,n){
			vis[i]=false;
			if(dp[S][i]!=Inf)
			q.push(make_pair(dp[S][i],i));
		}
		while(!q.empty()){
			int u=q.top().second;q.pop();
			if(vis[u])continue;
			vis[u]=true;
			for(int i=head[u];i;i=edge[i].next){
				int v=edge[i].to;
				if(dp[S][u]+edge[i].w<dp[S][v]){
					dp[S][v]=dp[S][u]+edge[i].w;
					q.push(make_pair(dp[S][v],v));
				}
			}
		}
	}
	int build(int Node_cnt,int Keynode_cnt,int *key_node){
		n=Node_cnt,k=Keynode_cnt;
		_for(i,1,1<<k)_rep(j,1,n)
		dp[i][j]=Inf;
		_for(i,0,k)
		dp[1<<i][key_node[i]]=0;
		_for(i,0,1<<k){
			_rep(j,1,n){
				for(int k=i&(i-1);k;k=(k-1)&i)
				dp[i][j]=min(dp[i][j],dp[k][j]+dp[i^k][j]);
			}
			dijkstra(i);
		}
		int ans=Inf;
		_rep(i,1,n)
		ans=min(ans,dp[(1<<k)-1][i]);
		return ans;
	}
}
2020-2021/teams/legal_string/jxm2001/最小斯坦纳树.1610963299.txt.gz · 最后更改: 2021/01/18 17:48 由 jxm2001