形如 $F(x)=\sum_{n=0}^{\infty}a_n\frac {x^n}{n!}$ 的函数, $a_n$ 可以提供关于这个序列的信息,一般用于解决有标号组合计数问题。
$$F(x)=\sum_{n=0}^{\infty}a_n\frac {x^n}{n!},G(x)=\sum_{n=0}^{\infty}b_n\frac {x^n}{n!}$$
$$F(x)G(x)=\sum_{n=0}^{\infty}\sum_{i=0}^n a_ib_{n-i}\frac {x^n}{i!(n-i)!}=\sum_{n=0}^{\infty}\sum_{i=0}^n {n\choose i}a_ib_{n-i}\frac {x^n}{n!}$$
$$\sum_{n=0}^{\infty}k^n\frac {x^n}{n!}=e^{kx}$$
$$\sum_{n=0}^{\infty}n^{\underline k}\frac {x^n}{n!}=x^ke^x$$
定义贝尔数 $w_n$ 表示将集合 $\{1,2\cdots n\}$ 划分为若干个不相交非空集合的方案数,求 $w_n$。
假设将 $n$ 化分到一个大小为 $i$ 的集合,不难得出递推式
$$w_n=[n==0]+\sum_{i=1}^{n} {n-1\choose i-1}w_{n-i}$$
构造 $F(x)=\sum_{n=0}^{\infty}w_n\frac {x^n}{n!},G(x)=\sum_{n=0}^{\infty}\frac {x^n}{n!}=e^x$,于是有
$$F(x)=1+\int F(x)G(x)\mathrm{d}x=1+\int F(x)e^x\mathrm{d}x$$
接下来考虑求解 $F(x)$
$$\mathrm{d}F(x)=F(x)e^x\mathrm{d}x$$
$$\frac {\mathrm{d}F(x)}{F(x)}=e^x\mathrm{d}x$$
$$\ln F(x)=e^x+C$$
将 $F(0)=1$ 代入,得 $F(x)=\exp (e^x-1)$,于是 $w_n=[\frac {x^n}{n!}]F(x)$。
考虑对结果的解释,$e^x-1=\sum_{n=1}^{\infty}a_n\frac {x^n}{n!}(a_n=1)$ 可以理解为将所有 $n$ 个元素化为为一个集合的方案数 $a_n$ 的 $\text{EGF}$。
$\exp (e^x-1)=\sum_{i=0}^{\infty} \cfrac {A^i(x)}{i!}$ 式子中 $\sum_{i=0}^{\infty}$ 可以理解为枚举最终划分的集合数 $i$。
$A^i(x)$ 可以理解为将所有元素划分为 $i$ 个非空集合,$i!$ 可以理解为划分的集合之间无序所以除以全排列数。
类似的,设 $n$ 个点带标号生成树的 $\text{EGF}$ 为 $F(x)$,则 $n$ 个点带标号生成森林的 $\text{EGF}$ 为 $\exp F(x)$。
其中 $n$ 个点带标号生成树的 $\text{EGF}$ 容易求得为 $\sum_{n=0}^{\infty} n^{n-2}\frac {x^n}{n!}$,所以取 $\exp$ 即可快速求得 $n$ 个点带标号生成森林的 $\text{EGF}$。
设 $n$ 个点带标号无向连通图的 $\text{EGF}$ 为 $F(x)$,则 $n$ 个点带标号无向图的 $\text{EGF}$ 为 $\exp F(x)$。
其中 $n$ 个点带标号无向图的 $\text{EGF}$ 容易求得为 $\sum_{n=0}^{\infty} 2^{n \choose 2}\frac {x^n}{n!}$,所以取 $\ln$ 即可快速求得 $n$ 个点带标号无向连通图的 $\text{EGF}$。