一种用于解决恰好选 $a$ 个物品的最优方案的算法。
其中设 $F(x)$ 表示 $a=x$ 的最佳收益函数,则 $F(x)$ 必须是凸函数。
由于 $F(x)$ 为凸函数,所以对固定的斜率 $k$ 求出斜线与 $F(x)$ 构成的凸包的切点,当斜率单调变化时切点位置也是单调变化的。
于是可以二分找到切点位于 $x=a$ 的斜率然后计算该点答案。接下来考虑对固定的 $k$ 如何计算切点 $x$ 以及切点对应的 $F(x)$。
设切线为 $y=kx+b$,于是有 $b=y-kx$。
求切点过程可以认为是对每个物品作一个大小为 $k$ 的偏移,然后求解此时的最佳方案,同时记录最优方案中选中的物品个数。
最优方案对应最大的 $b$,这个方案对应的物品个数就是切点横坐标 $x$,然后再反过来利用 $y=b+kx$ 即可得到原始答案。
注意有些时候会出现多个最佳方案的情况,这个时候要强制一下偏序,比如强制取物品最大的方案。
给定一个图,每条边一个边权且有一种颜色(黑/白)。要求构造一棵生成树,满足恰好有 $a$ 条白边,在此基础上边权和最小。
设 $F(x)$ 表示恰好选 $x$ 条白边时的最小生成树边权和,不难发现 $F(x)$ 是下凸的。
二分斜率,然后每次对每条白边减去等于斜率的偏移量,然后跑一遍最小生成树同时记录最优方案选中的白边数量。
黑白边边权相同时优先考虑白边。得到最优斜率 $k$ 后答案为白边作 $k$ 偏移量后的最小生成树 $+ka$。
时间复杂度 $O\left(m\log m\log V\right)$。注意这种生成树的题一般可以黑白边分开排序双指针处理,好像常数可以大幅减小。
给定一棵边权树,要求从树上选 $k$ 条边,所有边无公共点且最大化边权和。
设 $F(x)$ 表示选 $x$ 条边的最大边权和,不难发现 $F(x)$ 为凸函数。斜率最大值为 $V$(无脑加一条边),最小值为 $-nV$(强行加一条边的最坏影响)。
利用 $\text{wqs}$ 二分套树形 $\text{dp}$ 求解即可。
一共有 $n$ 只宝可梦,有 $a$ 个普通球和 $b$ 个高级球。每个宝可梦在一次捕捉失败后就会逃跑。
对第 $i$ 只宝可梦,用普通球的捕获率是 $p_i$,用高级球的捕获率是 $q_i$,同时用普通球和高级球的捕获率是 $p_i+q_i-p_iq_i$。
求最优策略下能捕捉宝可梦的期望值。
设 $F(x,y)$ 表示用 $x$ 个普通球和 $y$ 个高级球的期望捕捉数。
不难发现对固定的 $x$,$F(x,y)$ 是凸函数,于是利用 $\text{wqs}$ 二分可以 $O(n\log v)$ 计算出 $F(x,b)$。
然后显然 $F(x,b)$ 也是凸函数,于是再套一层 $\text{wqs}$ 二分可以 $O\left(n\log^2 v\right)$ 计算出 $F(a,b)$。
给定序列 $A$,定义子串 $A[l\sim r]$ 的费用为 $(\sum_{i=l}^r a_i+1)^2$。要求将 $A$ 划分成 $m$ 段,最小化费用。
$\text{wqs}$ 二分套斜率优化,斜率优化的难点在于 $\text{wqs}$ 二分具有第二关键字,即收益相同的情况下需要最大或最小化划分的次数。
斜率优化比较难处理这方面的要求。本人的斜率优化板子貌似是强制取最小的,如果 $\text{WA}$ 了可以考虑假设强制取最小的/最大都试试。