拉格朗日插值的公式大概是 $f(k) = \sum_{i=0}^{n}y_i \prod_{j!=i} \frac{k x_j}{x_i x_j}$ $x_i,y_i$ 是在 $x_i$ 的取值。
#include <bits/stdc++.h> #define int long long using namespace std; struct io { char buf[1 << 26 | 3], *s; int f; io() { f = 0, buf[fread(s = buf, 1, 1 << 26, stdin)] = '\n'; } io& operator >> (int&x) { for(x = f = 0; !isdigit(*s); ++s) f |= *s == '-'; while(isdigit(*s)) x = x * 10 + (*s++ ^ 48); return x = f ? -x : x, *this; } }; const int mod = 998244353; int qpow(int x, int y) { int res = 1; for(; y; y >>= 1, x = x * x % mod) if(y & 1) res = res * x % mod; return res; } int inv(int x) { return qpow(x, mod - 2); } int n, k; const int maxn = 2e3 + 32; int x[maxn], y[maxn]; #define out cout signed main() { #ifdef LOCAL #define in cin ios :: sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr); freopen("testdata.in", "r", stdin); #else io in; #endif in >> n >> k; for(int i = 1 ; i <= n ; i ++) in >> x[i] >> y[i]; int ans = 0; for(int i = 1 ; i <= n ; i ++) { int a, b; a = b = 1; for(int j = 1 ; j <= n ; j ++) if(i ^ j) { a = a * (k - x[j]) % mod; } for(int j = 1 ; j <= n ; j ++) if(i ^ j) { b = b * (x[i] - x[j]) % mod; } a = (a + mod) % mod, b = (b + mod) % mod, b = inv(b); ans = (ans + a * b % mod * y[i] % mod) % mod; } out << ans << '\n'; return 0; }