Warning: session_start(): open(/tmp/sess_db8cc69fc06f6d9a2bd890d2587ab7c6, O_RDWR) failed: No space left on device (28) in /data/wiki/inc/init.php on line 239

Warning: session_start(): Failed to read session data: files (path: ) in /data/wiki/inc/init.php on line 239

Warning: Cannot modify header information - headers already sent by (output started at /data/wiki/inc/init.php:239) in /data/wiki/inc/auth.php on line 430

Warning: Cannot modify header information - headers already sent by (output started at /data/wiki/inc/init.php:239) in /data/wiki/inc/actions.php on line 38

Warning: Cannot modify header information - headers already sent by (output started at /data/wiki/inc/init.php:239) in /data/wiki/lib/tpl/dokuwiki/main.php on line 12
2020-2021:teams:manespace:codeforces_round_641_div._2 [CVBB ACM Team]

用户工具

站点工具


2020-2021:teams:manespace:codeforces_round_641_div._2

目录

比赛链接https://codeforc.es/contest/1350

CN的题真要命


A

题意:t次操作,每次给定n,k,求k次$n=n+f(n)$之后的n值,其中$f(n)$求取n的最小质因子。

题解:签到(之后就罚坐)题,分三类情况:

  • 偶数最小质因子就是2,加完还是偶数,直接 $n + 2k$
  • 非质奇数加一次最小质因子后会变偶数,所以 $n + f(n) + 2(k-1)$
  • 质数第一次必定加本身,变成偶数,所以 $n*2 + 2(k-1)$

$1≤n≤2*10^6$,$1≤t≤10^2$,暴力不放心可以线性筛

AC代码⇒https://codeforc.es/contest/1350/submission/79832106

B

题意:t次询问($1≤t≤10^2$),每次给定长为 n ($1≤n≤10^5$)的正整数序列{s1,s2,…,sn},求子序列满足对任意$i≤j$有si < sj且j % i == 0的最长子序列长度

题解:不难想到LIS,dp可以过,注意一下细节防止TLE

AC代码⇒https://codeforc.es/contest/1350/submission/79954462

C

题意:给定长为n ($2≤n≤10^5$)的正整数序列{s1,s2,…,sn},求任意两元素LCM(最小公倍数)组成新序列的GCD(最大公约数)

题解:咕咕咕

ac代码⇒https://codeforc.es/contest/1350/submission/79957224

D

题意:t次询问,每次给定长为n的正整数序列

E

F

没看,不补

2020-2021/teams/manespace/codeforces_round_641_div._2.1589364585.txt.gz · 最后更改: 2020/05/13 18:09 由 intouchables