A.LCM Problem
https://codeforces.com/contest/1389/problem/A
题意: 找到[l, r]范围内的两个数x < y使得其最小公倍数也在[l, r]范围内。
设x = p * gcd(x, y) ,y = q * gcd(x, y) ,pq互质。lcm(x, y) = pq*gcd(x, y)。
x确定时y = 2x 时lcm(x, y) = y取到最小值
x = l时存在解有= 2*l。判断r是否小于2*l即可。
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
int main() {
int t = 0;
cin >> t;
while (t--) {
LL l, r;
cin>>l>>r;
if(r < 2 * l)cout<<-1<<' '<<-1<<endl;
else cout<<l<<' '<<2*l<<endl;
}
B.Array Walk
题意:给定一个数组,起始位置在下标1处,可以选择向左走与向右走,不可重复向左走,向左走总次数不得超过p,总共走k次,求经过路径上数组元素值和的最大值。
贪心。对于1-x范围内的路径,三种情况可能为最优值:
找到相邻两项和的最大值,在这相邻两项间重复走min(p, k-p/2)次。
找到相邻两项和的最大值,在这相邻两项间重复走min(p, k-p/2)次, 再在结尾向左走1次。
1→x→x-1
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
LL a[100005];
LL maxA2[100005];
LL tot[100005];
int main() {
int t = 0;
cin >> t;
while (t--) {
int n, k, z;
LL ans = 0;
cin>>n>>k>>z;
LL tt = 0;
for (int i = 0; i < n; ++i) {
scanf("%d", a+i);
if(i)tt += a[i];
tot[i] = tt;
}
LL a2 = 0;
for (int i = 0; i < n - 1; ++i) {
a2 = max(a2, a[i] + a[i+1]);
maxA2[i] = a2;
}
ans = tot[k];
for (int i = 1; i <= k; ++i) {
int rep = min(z, (k - i) / 2);
if(k == i + rep * 2) ans = max(ans, maxA2[i - 1] * rep + tot[i]);
if(k == i + 1 && z) ans = max(ans, tot[i] + a[i-1]);
if(k == i + 1 + rep * 2 && z >= rep + 1) ans = max(ans, maxA2[i - 1] * rep + tot[i] + a[i-1]);
}
cout<<ans + a[0]<<endl;
}
}
C.Good String
题意:长度为n的good string是s[i] = s[(i+2) % n] 的字符串
给定一个0-9构成的字符串,求使其变为good string需要删除的最少字符数
直接暴力枚举,在0-9中选2个数字构成good string,计算每次选择需要删除的字符数,找到最小的答案。
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
int main() {
int t = 0;
cin >> t;
while (t--) {
string s;
cin>>s;
int l = s.length();
int ans = INT32_MAX;
for (int i = '0'; i <= '9'; ++i) {
for (int j = '0'; j <= '9'; ++j) {
int e = 0;
bool rev = 0;
for (int k = 0; k < l && e < ans; ++k) {
char c = rev ? j : i;
if(s[k] != c) e++;
//else if(k == l - 1 && i != j && (l & 1))e++;
else rev = !rev;
}
if(rev && (i != j))e++;
ans = min(ans, e);
}
}
cout<<ans<<endl;
}
}
D.Segment Intersections
题意:给定2种区间,每种区间有n个,2种不同区间为一组。每次操作可以将区间向左/右扩展一个单位。求使各组区间重叠长度达到k的最小步数。
最优情况下,扩展时有3个过程:不相邻→相邻→区间完全重叠→继续扩展
三个过程的重叠数收入分别为0,扩展数、扩展数/2
记录每个过程的扩展长度,枚举选i组区间扩展到重叠k次需要的扩展数,取最小值。
需要注意已经重叠的情况
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
int main() {
int t = 0;
cin >> t;
while (t--) {
LL n, k;
cin>>n>>k;
int l1, r1, l2, r2;
cin>>l1>>r1>>l2>>r2;
LL pre = max(0, max(l1, l2) - min(r1, r2));
LL most = max(r1, r2) - min(l1, l2);
LL ist = max(0, min(r1, r2) - max(l1, l2) )* (LL)n ;
k -= ist;
if(k <= 0){
cout<<0<<endl;
continue;
}
LL ans = INT32_MAX;
for (int i = 1; i <= n; ++i) {
LL cur = pre * i;
cur += min((LL)k, most * i);
if(k > most * i){
cur += 2 * (k - most * i);
}
ans = min(ans, cur);
}
cout<<ans<<endl;
}
}